摘要:
Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
摘要:
Methods are disclosed of making linear and cross-linked, HMW (high molecular weight) polysilanes and polygermanes, polyperhydrosilanes and polyperhydrogermanes, functional liquids containing the same, and methods of using the liquids in a range of desirable applications. The silane and germane polymers are generally composed of chains of Si and/or Ge substituted with R' substituents, where each instance of R' is, for example, independently hydrogen, halogen, alkenyl, alkynyl, hydrocarbyl, aromatic hydrocarbyl, heterocyclic aromatic hydrocarbyl, SiR' 3, GeR' 3, PR' 2, OR' , NR' 2, or SR'; where each instance of R is independently hydrogen or hydrocarbyl. The cross-linked polymers can be synthesized by dehalogenative coupling or dehydrocoupling. The linear polymers can be synthesized by ring-opening polymerization. The polymers can be further modified by halogenation and/or reaction with the source of hydride to furnish perhydrosilane and perhydrogermane polymers, which are used in liquid ink formulations. The synthesis allows for tuning of the liquid properties (e.g., viscosity, volatility, and surface tension). The liquids can be used for deposition of films and bodies by spincoating, inkjetting, dropcasting, etc., with or without the use of UV irradiation. The deposited films can be converted into amorphous and polycrystalline silicon or germanium, and silicon or germanium oxide or nitride by curing at 400-600 DEG C and (optionally) laser- or heat-induced crystallization (and/or dopant activation, when dopant is present).
摘要:
Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
摘要:
Improved batteries described herein generally comprise an electrolyte having lithium ions and a cathode comprising submicron metal vanadium oxide particles. In some embodiments, the battery demonstrate an accessible current capacity of a least about 220 mAh/g when pulsed in groups of four constant energy pulses at a current density of 30 mA/cm2 to deliver 50 Joules per pulse. The four pulses of a pulse train are separated by 15 seconds of rest between each pulse, and there are 6 days between pulse groups, upon discharge down to a pulse discharge voltage of 2 V. In further embodiments, the batteries have an average internal electrical resistance of no more than 0.2 Ohms at a current density of at least about 30 mA/cm2. Furthermore, the batteries can have a current capability of at least about 0.4 amps per cubic centimeter battery volume. Due to the improved discharge performance, the batteries can exhibit no significant voltage delay throughout the life of the battery as demonstrated in a three month accelerated discharge test.
摘要:
Monolithic optical structures include a plurality of layer with each layer having an isolated optical pathway confined within a portion of the layer. The monolithic optical structure can be used as an optical fiber preform. Alternatively or additionally, the monolithic optical structure can include integrated optical circuits within one or more layers of the structure. Monolithic optical structures can be formed by performing multiple passes of a substrate through a flowing particle stream. The deposited particles form an optical material following consolidation. Flexible optical fibers include a plurality of independent light channels extending along the length of the optical fiber. The fibers can be pulled from an appropriate preform.
摘要:
A collection of silicon oxide nanoparticles have an average diameter from about 5 nm to about 100 nm. The collection of silicon oxide nanoparticles effectively include no particles with a diameter greater than about four times the average diameter. The particles generally have a spherical morphology. Methods for producing the nanoparticles involve laser pyrolysis. The silicon oxide nanoparticles are effective for the production of improved polishing compositions including compositions useful for chemical-mechanical polishing.
摘要:
Tin oxide nanoparticles were produced with tin in a variety of oxidation states. In particular, nanoparticles of single phase, crystalline SnO2 were produced. Preferred tin oxide nanoparticles have an average diameter from about 5 nm to about 100 nm with an extremely narrow distribution of particle diameters. The tin oxide nanoparticles can be produced in significant quantities using a laser pyrolysis apparatus. Nanoparticles produced by laser pyrolysis can be subjected to further processing to change the properties of the particles without destroying the nanoscale size of the particles. The nanoscale tin oxide particles are useful for the production of transparent electrodes for use in flat panel displays.
摘要:
Nanoscale UV absorbing particles are described that have high UV absorption cross sections while being effectively transparent to visible light. These particles can be used to shield individuals from harmful ultraviolet radiation. These particles can also be used in industrial processing especially to produce solid state electronic devices by creating edges of photoresist material with a high aspect ratio. The UV absorbing particles can also be used as photocatalysts that become strong oxidizing agents upon exposure to LV light. Laser pyrolysis provides an efficient method for the production of suitable particles.
摘要:
Photovoltaic modules can comprise solar cells having doped domains of opposite polarities along the rear side of the cells. The doped domains can be located within openings through a dielectric passivation layer. In some embodiments, the solar cells are formed form thin silicon foils. Doped domains can be formed by printing inks along the rear surface of the semiconducting sheets. The dopant inks can comprise nanoparticles having the desired dopant. Photovoltaic modules can be formed with a plurality of solar cells having different sized structures to improve module performance. The sized can be determined dynamically based on estimated properties of the semiconductor so that the current outputs of the cells in the module are more similar to each other. The modules can produce higher power relative to modules with similar equal sized cells that do not produce matched currents. Appropriate dynamic processing methods are described that include processing steps that provide adjustments of the processing according to the dynamic adjustments in cell designs.