摘要:
A method for fabricating a thermally isolated microelectromechanical system (MEMS) structure is provided. The method includes processing a first wafer of a first material with a glass wafer to form a composite substrate including at least one sacrificial structure of the first material and glass; forming a MEMS device in a second material; forming at least one temperature sensing element on at least one of: the composite substrate; and the MEMS device; and etching away the at least one sacrificial structure of the first material in the composite substrate to form at least one thermally isolating glass flexure. The MEMS device is thermally isolated on a thermal isolation stage by the at least one thermally isolating glass flexure. The at least one temperature sensing element in on a respective at least one of: the thermal isolation stage; and the MEMS device.
摘要:
The present invention describes wafer through-plating through a semiconductor substrate and a method for producing this wafer through-plating. In this case, at least one via hole is made in the front side of a semiconductor substrate in order to form the wafer through-plating using a trench etching process. The semiconductor material of the side wall of the via hole is then porously etched in an electrochemical etching process. A metal is introduced into the via hole in order to produce the electrical contact-making connection. In order to enable the electrical connection from the front side to the rear side of the semiconductor substrate, the via hole is opened from the rear side, for example by thinning the semiconductor substrate. In this case, this opening may be made before or after the metal is introduced into the via hole.
摘要:
This invention provides a front-side silicon micromachining process for the fabrication of suspended Porous Silicon membranes in the form of bridges or cantilevers and of thermal sensor devices employing these membranes. The fabrication of the suspended Porous Silicon membranes comprises the following steps: (a) formation of a Porous Silicon layer (2) in, at least one, predefined area of a Silicon substrate (1), (b) definition of etch windows (5) around or inside said Porous Silicon layer (2) using standard photolithography and (c) selective etching of the Silicon substrate (1), underneath the Porous Silicon layer (2), by using dry etching techniques to provide release of the Porous Silicon membrane and to form a cavity (6) under the said Porous Silicon layer. Furthermore, the present invention provides a method for the fabrication of thermal sensors based on Porous Silicon membranes with minimal thermal losses, since the proposed methodology combines the advantages that result from the low thermal conductivity of Porous Silicon and the use of suspended membranes. Moreover, the front-side micromachining process proposed in the present invention simplifies the fabrication process. Various types of thermal sensor devices, such as calorimetric-type gas sensors, conductometric-type gas sensors and thermal conductivity sensors are described utilizing the proposed methodology.
摘要:
This invention provides a front-side silicon micromachining process for the fabrication of suspended Porous Silicon membranes in the form of bridges or cantilevers and of thermal sensor devices employing these membranes. The fabrication of the suspended Porous Silicon membranes comprises the following steps: (a) formation of a Porous Silicon layer (2) in, at least one, predefined area of a Silicon substrate (1), (b) definition of etch windows (5) around or inside said Porous Silicon layer (2) using standard photolithography and (c) selective etching of the Silicon substrate (1), underneath the Porous Silicon layer (2), by using dry etching techniques to provide release of the Porous Silicon membrane and to form a cavity (6) under the said Porous Silicon layer. Furthermore, the present invention provides a method for the fabrication of thermal sensors based on Porous Silicon membranes with minimal thermal losses, since the proposed methodology combines the advantages that result from the low thermal conductivity of Porous Silicon and the use of suspended membranes. Moreover, the front-side micromachining process proposed in the present invention simplifies the fabrication process. Various types of thermal sensor devices, such as calorimetric-type gas sensors, conductometric-type gas sensors and thermal conductivity sensors are described utilizing the proposed methodology.
摘要:
The invention concerns a micromachined structure capable of operating at high temperature, comprising a deformable membrane integral with a support deforming it. The membrane comprises at least a membrane layer (6) made of a material retaining its elasticity at said high operating temperature, the membrane layer supporting elements (10) detecting the membrane deformation made of semiconductor material, and has an electrically insulating interface with the detecting elements consisting of an electrically insulating layer (8). The support (5) is made of a material enabling the membrane to be released by a microelectronic technique.
摘要:
The present invention describes wafer through-plating through a semiconductor substrate and a method for producing this wafer through-plating. In this case, at least one via hole is made in the front side of a semiconductor substrate in order to form the wafer through-plating using a trench etching process. The semiconductor material of the side wall of the via hole is then porously etched in an electrochemical etching process. A metal is introduced into the via hole in order to produce the electrical contact-making connection. In order to enable the electrical connection from the front side to the rear side of the semiconductor substrate, the via hole is opened from the rear side, for example by thinning the semiconductor substrate. In this case, this opening may be made before or after the metal is introduced into the via hole.
摘要:
Disclosed is a method for the production of a component comprising a semiconductor carrier (1), wherein porous semiconductor material (3) is produced to form at least one thermally decoupled structure. According to the invention, a recess or several recesses (5) is/are etched in the porous material (3) in order to produce at least one thermally decoupled area (6) which is defined by said one recess or several recesses (5). The thermally decouplable structure is then formed on the at least one area. The invention also relates to a component produced according to said method.
摘要:
This invention provides a front-side silicon micromachining process for the fabrication of suspended Porous Silicon membranes in the form of bridges or cantilevers and of thermal sensor devices employing these membranes. The fabrication of the suspended Porous Silicon membranes comprises the following steps: (a) formation of a Porous Silicon layer (2) in, at least one, predefined area of a Silicon substrate (1), (b) definition of etch windows (5) around or inside said Porous Silicon layer (2) using standard photolithography and (c) selective etching of the Silicon substrate (1), underneath the Porous Silicon layer (2), by using dry etching techniques to provide release of the Porous Silicon membrane and to form a cavity (6) under the said Porous Silicon layer. Furthermore, the present invention provides a method for the fabrication of thermal sensors based on Porous Silicon membranes with minimal thermal losses, since the proposed methodology combines the advantages that result from the low thermal conductivity of Porous Silicon and the use of suspended membranes. Moreover, the front-side micromachining process proposed in the present invention simplifies the fabrication process. Various types of thermal sensor devices, such as calorimetric-type gas sensors, conductometric-type gas sensors and thermal conductivity sensors are described utilizing the proposed methodology.
摘要:
A method for fabricating a thermally isolated microelectromechanical system (MEMS) structure is provided. The method includes processing a first wafer of a first material with a glass wafer to form a composite substrate including at least one sacrificial structure of the first material and glass; forming a MEMS device in a second material; forming at least one temperature sensing element on at least one of: the composite substrate; and the MEMS device; and etching away the at least one sacrificial structure of the first material in the composite substrate to form at least one thermally isolating glass flexure. The MEMS device is thermally isolated on a thermal isolation stage by the at least one thermally isolating glass flexure. The at least one temperature sensing element in on a respective at least one of: the thermal isolation stage; and the MEMS device.