Abstract:
Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate component to be coated; providing said component with a diamond coating; wherein said diamond coating conductivity is increased in order to reduce dust attraction by the coated component when used in said micromechanical system. Corresponding micromechanical components and systems are also provided.
Abstract:
The present invention describes a deposition method suitable for depositing a coating on a device. The method is particularly suited for depositing a self assembled monolayer (SAM) coating on a micro electro-mechanical structures (MEMS). The method employs carrier gases in order to form a deposition vapour in a process chamber within which the device is located wherein the deposition vapour comprises controlled amounts of a vapour precursor material and a vapour reactant material. Employing the described technique avoids the problematic effects of particulate contamination of the device even when the volumetric ratio of the reactant material to the precursor material is significantly higher than those ratios previously employed in the art. The vapour precursor material can be of a type that provides the MEMS with an anti-stiction coating with the associated vapour reactant material comprising water.
Abstract:
The invention relates to a method for depositing a nonstick coating onto the surface of micromechanical structures (5a; 7a) on a substrate (Sub), whereby the material or precursor material to be deposited is supplied to the structures (5a; 7a) in a solvent and transport medium. The solvent and transport medium used is a supercritical CO2 fluid. Deposition of the material or precursor material is brought about by a physical change of state of the CO2 fluid or by a surface reaction between the surface and the precursor material. The inventive method allows to coat the micromechanical structures (5a; 7a) in a cavern (14) or in a cavity after their encapsulation, whereby the material to be deposited is supplied via access channels (15) or perforation holes.
Abstract:
An anti stiction structure for cantilever formation technique. In one embodiment, the cantilever (130) includes downwardly extending plurality of legs (131 and 132) which preventing the substrate (100) from sticking to the cantilever. In another embodiment, the polymer cantilever (215) is prevented from sticking to the substrate (200) by at amortized stick layer (205) on the substrate and during the formation of the cantilever, the stick layer is removed later as a sacrificial layer.
Abstract:
A method of cleaning and treating a device, including those of the micromechanical (10) and semiconductor type. The surface of a device, such as the landing electrode (22) of a digital micromirror device (10), is first cleaned with a supercritical fluid (SCF) in a chamber (50) to remove soluble chemical compounds, and then maintained in the SCF chamber until and during the subsequent passivation step. Passivants including PFDA and PFPE are suitable for the present invention. By maintaining the device in the SCF chamber, and without exposing the device to, for instance, the ambient of a clean room, organic and inorganic contaminants cannot be deposited upon the cleaned surface prior to the passivation step. The present invention derives technical advantages by providing an improved passivated surface that is suited to extend the useful operation life of devices, including those of the micromechanical type, reducing stiction forces between contacting elements such as a mirror and its landing electrode. The present invention is also suitable for cleaning and passivating other surfaces including a surface of semiconductor wafers, and the surface of a hard disk memory drive.
Abstract:
An anti stiction structure for cantilever formation technique. In one embodiment, the cantilever (130) includes downwardly extending plurality of legs (131 and 132) which preventing the substrate (100) from sticking to the cantilever. In another embodiment, the polymer cantilever (215) is prevented from sticking to the substrate (200) by at amortized stick layer (205) on the substrate and during the formation of the cantilever, the stick layer is removed later as a sacrificial layer.
Abstract:
In various embodiments of the invention, a regenerating protective coating is formed on at least one surface of an interior cavity of a MEMS device 80. Particular embodiments provide a regenerating protective coating 170 on one or more mirror surfaces of an interferometric light modulation device, also known as an iMoD in some embodiments. The protective coating can be regenerated through the addition of heat or energy to the protective coating.
Abstract:
The invention comprises a method for fabricating a monolithic chip containing integrated circuitry as well as a suspended polysilicon microstructure. The inventive method comprises 67 processes which are further broken down into approximately 330 steps. The processes and their arrangement allow for compatible fabrication of transistor circuitry and the suspended polysilicon microstructure on the same chip.
Abstract:
A method of cleaning and treating a device, including those of the micromechanical (10) and semiconductor type. The surface of a device, such as the landing electrode (22) of a digital micromirror device (10), is first cleaned with a supercritical fluid (SCF) in a chamber (50) to remove soluble chemical compounds, and then maintained in the SCF chamber until and during the subsequent passivation step. Passivants including PFDA and PFPE are suitable for the present invention. By maintaining the device in the SCF chamber, and without exposing the device to, for instance, the ambient of a clean room, organic and inorganic contaminants cannot be deposited upon the cleaned surface prior to the passivation step. The present invention derives technical advantages by providing an improved passivated surface that is suited to extend the useful operation life of devices, including those of the micromechanical type, reducing stiction forces between contacting elements such as a mirror and its landing electrode. The present invention is also suitable for cleaning and passivating other surfaces including a surface of semiconductor wafers, and the surface of a hard disk memory drive.