Abstract:
A method for forming neuromuscular junctions includes forming functional neuromuscular junctions between motoneurons and muscle cells by co-culturing one or more human motoneurons and one or more rat muscle cells in a substantially serum-free medium. A synthetic mammalian neuromuscular junction includes a human motoneuron functionally linked to a rat muscle cell in a substantially serum-free medium. An artificial substrate may be used to support the one or more neuromuscular junctions.
Abstract:
Provided is an efficient method of inducing differentiation of a pulp cell into an odontoblast. Also provided is an agent for inducing differentiation capable of inducing differentiation into an odontoblast efficiently. The method of inducing differentiation of a pulp cell into an odontoblast includes using a substance capable of activating a Wnt signaling pathway. Further, the agent for inducing differentiation includes a substance capable of activating a Wnt signaling pathway. Specifically, the substance capable of activating a Wnt signaling pathway is any one selected from sodium perchlorate, sodium perchlorate, lithium chloride, Norrin, and R-Spondin2.
Abstract:
Human progenitor T cells that are able to successfully engraft a murine thymus and differentiate into mature human T and NK cells are described The human progenitor T cells have the phenotype CD34+CD7+CD1a−CD5− or CD34+CD7+CD1a−CD5+ and are derived from human hematopoietic stem cells, embryonic stem cells and induced pluripotent stem cells b\ coculture with cells expressing a Notch receptor ligand (OP9-DL1 or OP9-DL4) Such cells are useful in a variety of applications including immune reconstitution, the treatment of immunodeficiencies and as carriers for genes used in gene therapy.
Abstract:
The present invention provides means and methods for alleviating genetic disease. A genetic defect that has a phenotype in differentiated cells can lead to defects in precursor cells thereof. These so-called secondary defects contribute to the overall disease of the individual. In the present invention, genetic intervention with the aim to alleviate symptoms of genetic disease is directed toward the primary genetic defect in the differentiated cell and the secondary defect in the precursor cell.
Abstract:
Compositions of matter which comprise a mixture of isolated muscle precursor cells with either isolated mesenchymal stem cells or isolated periosteum cells, optionally further including a myoinductive agent, a method for inducing isolated human mesenchymal stem cells to differentiate into myogenic cells, a method for producing dystrophin-positive myogenic cells in a mammal, a method for effecting muscle regeneration, and a method for treating muscular dystrophy are disclosed.
Abstract:
The present invention relates generally to a tissue preparation including tissue cells and extracts thereof useful for promoting or facilitating the growth, development and differentiation of cells and tissues. More particularly, the present invention provides muscle-derived material comprising intact or extracted extracellular matrix and/or cells as well as cytokines, growth factors and other components. The muscle preparations of the present invention resemble basement membrane and are derived from cellular-based material. The muscle preparation may be used in vitro or in vivo as inter alia, a cellular scaffold in various tissue engineering applications and in other cell culture systems for nurturing and enriching a range of cell types including, but not limited to, precursor and stem cells such as pre-adipogenic cells. The muscle preparation is also useful as a base for creams, such as in the cosmetic and topical therapeutic industries and as a matrix or additive in the food industry.
Abstract:
A method of generating a population of cells useful for treating a nerve disease or disorder in a subject, the method comprising up-regulating a level of at least one exogenous mi RNA in mesenchymal stem cells (MSCs) and/or down-regulating a level of at least one mi RNA using a polynucleotide agent that hybridizes to the mi RNA, thereby generating the population of cells useful for treating the nerve disease or disorder. Isolated populations of cells generated thereby and uses thereof are also provided.
Abstract:
Methods for isolating a CD133+/CD45neg/GlyAneg subpopulation of umbilical cord blood cells are disclosed. In some embodiments, the methods include providing an initial population of umbilical cord blood cells; contacting the initial population of cells with a first antibody that is specific for CD133, a second antibody that is specific for CD45, and a third antibody that is specific for Glycophorin A (GIyA) under conditions sufficient to allow binding of each antibody to its target, if present, on each cell of the initial population of cells; and isolating a subpopulation of cells that are CD133+, CD45neg, and GlyAneg. Also provided are isolated populations of CD133+/GlyAneg/CD45neg stem cells isolated from cord blood, methods for repopulating cell types in subjects, methods for bone marrow transplantation, methods for inducing hematopoietic competency in CD133+/GlyAneg/CD45neg stem cells, and cell culture systems that include CD133+/GIyAneg/CD45neg stem cells.