摘要:
Provided are engineered meat products formed as a plurality of at least partially fused layers, wherein each layer comprises at least partially fused multicellular bodies comprising non-human myocytes and wherein the engineered meat is comestible. Also provided are multicellular bodies comprising a plurality of non-human myocytes that are adhered and/or cohered to one another; wherein the multicellular bodies are arranged adjacently on a nutrient-permeable support substrate and maintained in culture to allow the multicellular bodies to at least partially fuse to form a substantially planar layer for use in formation of engineered meat. Further described herein are methods of forming engineered meat utilizing said layers.
摘要:
The invention relates to induction of reprogramming of somatic cells, by methods which require mild growth conditions. Disclosed are methods of inducing dedifferentiation of mesenchymal stromal cell (MSC), by seeding or incubating mesenchymal stromal cells (MSCs) at low density, and without introduction or expression of exogenous genes in the cells.
摘要:
Provided are engineered meat products formed as a plurality of at least partially fused layers, wherein each layer comprises at least partially fused multicellular bodies comprising non-human myocytes and wherein the engineered meat is comestible. Also provided are multicellular bodies comprising a plurality of non-human myocytes that are adhered and/or cohered to one another; wherein the multicellular bodies are arranged adjacently on a nutrient- permeable support substrate and maintained in culture to allow the multicellular bodies to at least partially fuse to form a substantially planar layer for use in formation of engineered meat. Further described herein are methods of forming engineered meat utilizing said layers.
摘要:
Organ system microarrays are provided comprising a substrate including a plurality of locations. Each location comprises a scaffold for supporting the growth and/or proliferation of cells and at lest one cell type. The microarrays provide reagents for testing the biological effect of test compounds on the function of miniature organ systems. In a further aspect of the invention, the microarrays allow expression profiles of an individual or population of individuals to be determined and compared. The organ system microarrays can be used in parallel with small animal testing or in post-animal testing to further characterize lead compounds prior to entering clinical trials, thus creating a substantial cost saving through the early elimination of lead compounds not likely to work in vivo .
摘要:
Differentiation and stability of neural stem cells can be enhanced by in vitro or in vivo culturing with one or more extracellular matrix (ECM) compositions, such as collagen I, IV, laminin and/or a heparan sulfate proteoglycan. In one aspect of the invention, adult mammalian enteric neuronal progenitor cells can be induced to differentiate on various substrates derived from components or combinations of neural ECM compositions. Collagen I and IV supported neuronal differentiation and extensive glial differentiation individually and in combination. Addition of laminin or heparan sulfate to collagen substrates unexpectedly improved neuronal differentiation, increasing neuron number, branching of neuronal processes, and initiation of neuronal network formation. In another aspect, neuronal subtype differentiation was affected by varying ECM compositions in hydrogels overlaid on intestinal smooth muscle sheets. The matrix compositions of the present invention can be used to tissue engineer transplantable innervated GI smooth muscle constructs to remedy aganglionic disorders.
摘要:
Differentiation and stability of neural stem cells can be enhanced by in vitro or in vivo culturing with one or more extracellular matrix (ECM) compositions, such as collagen I, IV, laminin and/or a heparan sulfate proteoglycan. In one aspect of the invention, adult mammalian enteric neuronal progenitor cells can be induced to differentiate on various substrates derived from components or combinations of neural ECM compositions. Collagen I and IV supported neuronal differentiation and extensive glial differentiation individually and in combination. Addition of laminin or heparan sulfate to collagen substrates unexpectedly improved neuronal differentiation, increasing neuron number, branching of neuronal processes, and initiation of neuronal network formation. In another aspect, neuronal subtype differentiation was affected by varying ECM compositions in hydrogels overlaid on intestinal smooth muscle sheets. The matrix compositions of the present invention can be used to tissue engineer transplantable innervated GI smooth muscle constructs to remedy aganglionic disorders.
摘要:
The present invention relates to a method of assembling a biological switching circuit (1). In a preferred embodiment the invention comprises assembly of a tissue capable of producing a signal, an afferent signal transmitter, neurons which can act as a control centre (4), an efferent signal transmitter and a tissue which is able to respond to the neuronal signal. The invention also relates to a biological switching circuit (1) producible by the method of the invention and its use.
摘要:
Provided is an efficient method of inducing differentiation of a pulp cell into an odontoblast. Also provided is an agent for inducing differentiation capable of inducing differentiation into an odontoblast efficiently. The method of inducing differentiation of a pulp cell into an odontoblast includes using a substance capable of activating a Wnt signaling pathway. Further, the agent for inducing differentiation includes a substance capable of activating a Wnt signaling pathway. Specifically, the substance capable of activating a Wnt signaling pathway is any one selected from sodium perchlorate, sodium perchlorate, lithium chloride, Norrin, and R-Spondin2.
摘要:
Human progenitor T cells that are able to successfully engraft a murine thymus and differentiate into mature human T and NK cells are described The human progenitor T cells have the phenotype CD34+CD7+CD1a−CD5− or CD34+CD7+CD1a−CD5+ and are derived from human hematopoietic stem cells, embryonic stem cells and induced pluripotent stem cells b\ coculture with cells expressing a Notch receptor ligand (OP9-DL1 or OP9-DL4) Such cells are useful in a variety of applications including immune reconstitution, the treatment of immunodeficiencies and as carriers for genes used in gene therapy.