摘要:
The present invention relates to a method for processing an object with miniaturized structures, having the steps of : feeding a reaction gas onto a surface of the object; processing the object by directing an energetic beam onto a processing site in a region, which is to be processed, on the surface of the object, in order to deposit material on the object or to remove material from the object, detecting interaction products of the beam with the object, and deciding whether the processing of the object must be continued or can be terminated with the aid of information which is obtained from the detected interaction products of the beam with the object, the region to be processed being subdivided into a number of surface segments, and the interaction products detected upon the beam striking regions of the same surface segment being integrated to form a total signal in order to determine whether processing of the object must be continued or can be terminated.
摘要:
The present invention concerns a method for etching a chromium layer in a vacuum chamber with the method steps of introducing a halogen compound into the vacuum chamber, directing an electron beam onto the area of the chromium layer to be etched and introducing an oxygen containing compound into the vacuum chamber. According to a further aspect, the present invention relates to a further method for the highly resolved removal of a layer out of metal and/or metal oxide which is arranged on an isolator or a substrate having poor thermal conductivity, comprising the method steps of arranging the layer inside a vacuum chamber, bombarding the layer with a focused electron beam with an energy of 3-30 keV, wherein the electron beam is guided such that the energy transfer per time and area causes a localized heating of the layer above its melting and/or vaporization point and wherein the removal of the layer is performed without the supply of reaction gases into the vacuum chamber.
摘要:
A microscopic metallic structure is produced by creating or exposing a patterned region of increased conductivity and then forming a conductor on the region using electrodeposition. In some embodiments, a microscopic metallic structure is formed on a substrate, and then the substrate is etched to remove the structure from the substrate. In some embodiments, a focused beam of gallium ion without a deposition precursor gas scans a pattern on a silicon substrate, to produce a conductive pattern on which a copper structure is then formed by electrochemical deposition of one or more metals. The structure can be freed from the substrate by etching, or can used in place. A beam can be used to access an active layer of a transistor, and then a conductor can be electrodeposited to provide a lead for sensing or modifying the transistor operation while it is functioning.
摘要:
A system and a method for processing and inspecting an object are provided, wherein the system comprises a particle beam column 26, an object holder 24 and a gas supply apparatus 28. Thereby, the object holder is formed comprising a base 20, a first table 21 displaceable relative to the base, a second table 22 displaceable relative to the first table and a third table 23 rotatable relative to the second table, wherein the cannula 30 of the gas supply apparatus 28 is fixed at the first table 21.
摘要:
A method of enhancing charged particle beam etching particularly suitable for copper interconnects, includes milling at non-contiguous locations to prevent the formation or propagation of an etch-resistant region within the rastered area. Two or more milling boxes are typically performed, one or more of the boxes having pixel spacing greater than the spot size, with the last box using a conventional pixel spacing (default mill) smaller than the spot size to produce a uniform, planar floor of the etched area.
摘要:
A processing system for processing an object (3) is provided, wherein the processing system is adapted, to focus a first energy beam, in particular an electron beam (11), and a second energy beam, in particular an ion beam (21), on a focusing region (29) in which a object (3) to be processed is arrangeable. A processing chamber wall (35) having two openings (38, 39) for traversal of both energy beams and a connector (37) for supplying process gas delimits a processing chamber (45) from a vacuum chamber (2) of the processing system. Processing the object by activating the process gas through one of the energy beams and inspecting the object via one of the energy beams is enabled for different orientations of the object relative to a propagation direction of one of the energy beams.
摘要:
A cluster source producing a beam of charged clusters 108 is used to assist charged particle beam processing on a work piece 112. For example, a protective layer is applied using a cluster source and a precursor gas, the gas being supplied by a gas injection system 104. The large mass of the cluster and the low energy per atom or molecule in the cluster restricts damage to within a few nanometers of the surface of the work piece. Fullerenes or clusters of fullerenes, bismuth, gold or Xe can be used with a precursor gas to deposit material onto a surface, or can be used with an etchant gas to etch the surface. Clusters can also be used to deposit material directly onto the surface to form a protective layer for charged particle beam processing or to provide energy to activate an etchant gas. An additional charged particle beam 107 can assist in machining the work piece when e.g. a protective layer is applied.
摘要:
The invention relates to a method for manufacturing an object with miniaturized structures, comprising: Processing the object by supplying reaction gas during concurrent directing an electron beam onto a location to be processed, to deposit material or ablate material; and inspecting the object by scanning the surface of the object with an electron beam and leading generated backscattered electrons and secondary electrons to an energy selector, reflecting the secondary electrons from the energy selector, detecting the backscattered electrons passing the energy selector and generating an electron microscopic image of the scanned region in dependence on the detected backscattered electrons; and examining the generated electron microscopic image and deciding whether further depositing or ablating of material should be carried out. Furthermore, the invention relates to an electron microscope and a processing system which are adapted for performing the method.