摘要:
Method for producing a silicon solar cell which is smoothly etched on one side, in which a front side and a rear side of a silicon substrate are etched (10) to form a smooth texture, a dielectric coating is then formed (14, 16) on the rear side of the silicon substrate and the front side of the silicon substrate is subsequently textured (20) by means of a texture etching medium, the dielectric coating formed on the rear side of the silicon substrate being used as an etching mask against the texture etching medium.
摘要:
A method for doping a semiconductor substrate includes heating the semiconductor substrate by irradiation with laser radiation and at the same time diffusing dopant from a dopant source into the semiconductor substrate in heated regions. The semiconductor substrate is heated by the irradiation with laser radiation. A surface portion of the semiconductor substrate that is less than 10% of the total surface of all irradiated regions is melted and recrystallized. There is also provided a solar cell.
摘要:
In a method for producing a solar cell, a layer stack of dielectric layers is applied to a back of a solar cell substrate and the layer stack is heated and is held at temperatures of at least 700° C. during a time period of at least 5 minutes. The novel solar cell has a layer stack of dielectric layers on its back. At least one of the dielectric layers of the layer stack is densified so that its resistivity to firing-through of pastes with glass components is enhanced.
摘要:
In a method for producing a solar cell, a layer stack of dielectric layers is applied to a back of a solar cell substrate and the layer stack is heated and is held at temperatures of at least 700° C. during a time period of at least 5 minutes. The novel solar cell has a layer stack of dielectric layers on its back. At least one of the dielectric layers of the layer stack is densified so that its resistivity to firing-through of pastes with glass components is enhanced.
摘要:
Solar cell (11; 21; 31) having a dielectric coating arranged on a back side of the solar cell (11; 21; 31) which is at least partly covered by at least one planar contact (12; 22; 32), a boundary line (14; 24; 34) of the at least one planar contact (12; 22; 32) having at least one recess (16a, 16b; 26a, 26b, 26c), and method for producing same.
摘要:
The invention concerns a solar cell (1) and a method for making same, said solar cell (1) comprising on its rear surface (3) both the emission contact (43) and the base contact (45), those two contacts (43, 45) being electrically isolated from each other by flanks (5) whereof the metal coating has been removed. The emitting zones (4) of the rear surface (3) of the cell are connected by channels to the transmitter (9) of the front face (8) of the cell. The emitting zones (4) of the rear surface (3) of the cell and the channels (7) consist of a laser. The metal coating of the side walls is removed by selective etching, said metal coating being removed only in the zone of the flanks (5) where the etching barrier layer (11) is insufficient.
摘要:
A method for chemically treating a disc-shaped substrate having a bottom surface, a top surface and side surfaces by contacting a process medium that is fluid-chemically active with at least the bottom surface of the substrate. The substrate is moved relative to the process medium while forming a triple line between the substrate, the substrate medium and the atmosphere surrounding the substrate and medium. In order to chemically remove errors, particularly in the side surfaces, relative motion should be carried out while avoiding a contacting of the process medium with the top surface of the substrate, where the triple line is formed at a desired height of the side surface facing away from the process medium flow side in relation to the relative motion between the substrate and the process medium.
摘要:
A method for chemically treating a disc-shaped substrate having a bottom surface, a top surface and side surfaces by contacting a process medium that is fluid-chemically active with at least the bottom surface of the substrate. The substrate is moved relative to the process medium while forming a triple line between the substrate, the substrate medium and the atmosphere surrounding the substrate and medium. In order to chemically remove errors, particularly in the side surfaces, relative motion should be carried out while avoiding a contacting of the process medium with the top surface of the substrate, where the triple line is formed at a desired height of the side surface facing away from the process medium flow side in relation to the relative motion between the substrate and the process medium. In this way, the atmosphere can be adjusted in relation to the partial pressures of the components in the process medium such that the top surface preserves hydrophobic characteristics.
摘要:
A method for fabricating a solar cell comprising a semiconductor substrate is proposed where electrical contacting is made on the back side of the semiconductor substrate. The back side of the semiconductor substrate has locally doped regions. The adjacent regions exhibit different doping from the region. The two regions are initially coated with electrically conductive material over the entire area. So that the conductive material does not short-circuit the solar cell, the two regions are covered with a thin electrically insulating layer at least at the region boundaries.The electrically conductive layer is separated by applying an etch barrier layer over the entire surface which is then removed free from masking and selectively e.g. by laser ablation, locally above the insulating layer. The conductive layer is locally removed in the area of the openings of the etch barrier layer by subsequent action of an etching solution.
摘要:
Solar cell (11; 21; 31) having a dielectric coating arranged on a back side of the solar cell (11; 21; 31) which is at least partly covered by at least one planar contact (12; 22; 32), a boundary line (14; 24; 34) of the at least one planar contact (12; 22; 32) having at least one recess (16a, 16b; 26a, 26b, 26c), and method for producing same.