Abstract:
A resist region covering the gate terminal and lead and between a passivation layer and a gate insulating layer is used to protect the gate terminal and lead. The resist region is located at a scribing line on margin of the color filter substrate of a panel, thereby the resist region can protect the passivation layer and the gate insulating layer from cracking, and the gate terminal and the lead from corrosion after a portion of the color filter substrate is removed along the scribing line.
Abstract:
A method of adjusting a sampling condition to generate a sampling clock in an analog to digital converter includes performing an analog to digital conversion on an analog input signal to thereby produce a digital sampled signal having a plurality of samples; calculating a difference value between two adjacent samples in the digital sampled signal; comparing the difference value with a threshold; adding the difference value into a sum of differences value if the difference value is greater than the threshold; and generating the sampling clock for the analog to digital converter according to the sum of differences value.
Abstract:
A one drop fill (ODF) liquid crystal display panel has a CF substrate, a TFT substrate, and a liquid crystal layer positioned between the CF substrate and the TFT substrate. The TFT substrate further has a pixel array region positioned in the center part of the TFT substrate, a sealant region position in the periphery region of the TFT substrate, a light-shielding pattern positioned on the sealant region, and a sealant pattern positioned corresponding to the sealant region between the CF substrate and the TFT substrate for assembling the two substrates.
Abstract:
A liquid crystal display device comprising a first substrate, a second substrate, a liquid crystal layer and a shading film is provided. The first substrate includes a display region and a non-display region. The liquid crystal layer is sandwiched between the first substrate and the second substrate. The shading film is located between the first substrate and the liquid crystal layer covering the non-display region. With the shading film covering the entire non-display region, the problem of light leakage from the edge of the display device is resolved.
Abstract:
A one drop fill (ODF) liquid crystal display panel has a CF substrate, a TFT substrate, and a liquid crystal layer positioned between the CF substrate and the TFT substrate. The TFT substrate further has a pixel array region positioned in the center part of the TFT substrate, a sealant region position in the periphery region of the TFT substrate, a light-shielding pattern positioned on the sealant region, and a sealant pattern positioned corresponding to the sealant region between the CF substrate and the TFT substrate for assembling the two substrates.
Abstract:
A position tuning structure is disclosed, which comprises a holding tube having a side hole extending through the wall of the holding tube; a nut locating in the holding tube and connecting to the side hole; a tuning element threadedly engaged in the nut; an elastic rod locating in the holding tube and pushed by the tuning element; a supporting element locating in the holding tube and pushed by the elastic rod; and an elastic element locating in the holding tube and connecting to the supporting element. Also, an adjustable optical film device comprising the above position tuning structure is disclosed.
Abstract:
A chip with an adjustable pinout function is disclosed. The chip includes a first pinout, a second pinout, a logic circuit, and a selecting circuit. The logic circuit includes a first port and a second port. The selecting circuit, which is coupled to the logic circuit, the first pinout, and the second pinout, controls the first pinout to be coupled to the first port or the second port, and controls the second pinout to be coupled to the first port or the second port.
Abstract:
The thin film transistor has a non-transparent structure besides and insulated with the gate. Hence, the light transmitted from the substrate is blocked and the light current induced in the thin film transistor is negligible. The method uses a mask with a slit pattern to form a non-uniform photoresist. Hence, the mask could be used to pattern two conductor layers for forming source/drain/channel.
Abstract:
The thin film transistor has a non-transparent structure besides and insulated with the gate. Hence, the light transmitted from the substrate is blocked and the light current induced in the thin film transistor is negligible. The method uses a mask with a slit pattern to form a non-uniform photoresist. Hence, the mask could be used to pattern two conductor layers for forming source/drain/channel.
Abstract:
A panel for a flat panel display device is disclosed, which includes a substrate having signal wires and terminals respectively connected to the signal wires, each terminal having first, second and third conducting layer, an insulating layer, a protection layer, contact holes connected between the first conducting layer and the third conducting layer, and contact holes connected between the second conducting layer and the third conducting layer, the insulating layer being sandwiched in between the second conducting layer and the substrate, the first conducting layer being sandwiched in between the protection layer and the insulating layer, the protection layer being sandwiched in between the first conducting layer and the third conducting layer or the second conducting layer and the third conducting layer, the first conducting layer being isolated from the second conducting layer.