Abstract:
Provided is a circuit to perform single-ended to differential conversion while providing common-mode voltage control. The circuit includes a converter to convert a single-ended signal to a differential signal and a stabilizing circuit adapted to receive the differential signal. The stabilizing circuit includes a sensor configured to sense a common-mode voltage level of the differential signal and a comparator having an output port coupled to the converter. The comparator is configured to compare the differential signal common-mode voltage level with a reference signal common-mode voltage level and produce an adjusting signal based upon the comparison. The adjusting signal is applied to the converter via the output port and is operative to adjust a subsequent common-mode voltage level of the differential signal.
Abstract:
The invention relates to a device for coating substrates having a process chamber (1) disposed in a reactor housing and a two-part, substantially cup-shaped susceptor (2, 3) disposed therein, forming an upper susceptor part (3) with the cup floor thereof having a flat plate (2) and a lower susceptor part (3) with the cup side walls thereof, the outer side (4) of the plate (2) of the upper susceptor part (2) facing upwards toward the process chamber (1) and forming a contact surface for at least one substrate, the upper susceptor part (2) contacting a front edge (3′) of the lower susceptor part (3) at the edge of said upper susceptor part (2), the lower susceptor part (3) being supported by a susceptor carrier (6), and heating zones (A, B, C) for heating the upper susceptor part (2) being disposed below the plate (2′). An advantageous refinement of the invention proposes that the upper susceptor part (2) be removable from the process chamber (1) separately from the lower susceptor part (3), and the joint between the edge of the upper susceptor part (2) and the front edge (3′) of the lower susceptor part (3) be formed as a heat conduction barrier.
Abstract:
In a latch circuit having a bistable pair of cross connected transistors of a first polarity and a third transistor of a second polarity, a current signal greater than a bias current is received at a latch circuit port, amplified with the third transistor, and applied to the latch circuit port. This decreases the time in which the latch circuit port receiving the current signal greater than the bias current reaches a steady state voltage.
Abstract:
Provided is a method and system for controlling current characteristics in a transceiver having a transmitter. The method includes identifying a phase control signal from an adjacent current cell preceding the particular current cell in time and logically ORing the phase control signal from the preceding cell with a phase control signal from the particular current cell.
Abstract:
An analog to digital converter includes a resistive ladder outputting a plurality of reference voltages and a coarse ADC receiving the reference voltages and a voltage input. A plurality of coarse comparators receive an output of the coarse ADC. A switch matrix receives an output of the coarse ADC and the reference voltages. The switch matrix inputs a plurality of control signals for selecting at least two voltage subranges. A fine ADC receives the two voltage subranges and the voltage input. A plurality of fine comparators receive an output of the fine ADC. An encoder converts outputs of the coarse and fine comparators to a digital representation of the voltage input. The voltage subranges are adjacent. Each control signal includes a plurality of control lines for controlling corresponding switches. The switches are field effect transistors.
Abstract:
A method for reducing bit errors in an analog to digital converter having an array of comparators. The outputs of first and second comparators are received as in inputs to an Exclusive OR gate. The first and second comparators are separated in the array by a third comparator. The output of the Exclusive OR gate is used to determine if the third comparator is in a metastable condition. If the third comparator is in a metastable condition, the bias current of the latch circuit of the third comparator is increased to increase the rate at which the third comparator transitions to a steady state.
Abstract:
A rod for rotating rod-bands for agricultural machines, and a method of making the same, are provided. The rod comprises a rod body and metallic securement pieces serving for placement on flexible, pull-resistant belts. The securement piece has a first, flat length section secured to one of the belts by rivets or the like, and a second length section with a sleeve-like configuration for accommodating the rod body.
Abstract:
Provided is a circuit to perform single-ended to differential conversion while providing common-mode voltage control. The circuit includes a converter to convert a single-ended signal to a differential signal and a stabilizing circuit adapted to receive the differential signal. The stabilizing circuit includes a sensor configured to sense a common-mode voltage level of the differential signal and a comparator having an output port coupled to the converter. The comparator is configured to compare the differential signal common-mode voltage level with a reference signal common-mode voltage level and produce an adjusting signal based upon the comparison. The adjusting signal is applied to the converter via the output port and is operative to adjust a subsequent common-mode voltage level of the differential signal.
Abstract:
An N-bit analog to digital converter includes a reference ladder connected to an input voltage at one end, and to ground at another end, an array of differential amplifiers whose differential inputs are connected to taps from the reference ladder, wherein each amplifier has a first differential input connected to the same tap as a neighboring amplifier, and a second differential input shifted by one tap from the neighboring amplifier, and an encoder that converts outputs of the array to an N-bit output.
Abstract:
An N-bit analog to digital converter includes a reference ladder, a track-and-hold amplifier connected to an input voltage, a coarse ADC amplifier connected to a coarse capacitor at its input and having a coarse ADC reset switch controlled by a first clock phase of a two-phase clock, a fine ADC amplifier connected to a fine capacitor at its input and having a fine ADC reset switch controlled by a second clock phase of the two-phase clock, a switch matrix that selects a voltage subrange from the reference ladder for use by the fine ADC amplifier based on an output of the coarse ADC amplifier, and wherein the coarse capacitor is charged to a coarse reference ladder voltage during the first clock phase and connected to the T/H output during the second clock phase, wherein the fine capacitor is connected to a voltage subrange during the first clock phase and to the T/H output during the second clock phase, and an encoder that converts outputs of the coarse and fine ADC amplifiers to an N-bit output.