摘要:
A mixed metal oxide catalytic system for producing olefins and carboxylic acids from lower alkanes comprising a catalyst composition having the formula MoaVbAlcXdYeOz wherein: X is at least one element selected from the group consisting of W and Mn; Y is at least one element selected from the group consisting of Pd, Sb, Ca, P, Ga, Ge, Si, Mg, Nb, and K; a is 1; b is 0.01 to 0.9; c is >0 to 0.2; d is >0 to 0.5; e is >0 to 0.5; and z is an integer representing the number of oxygen atoms required to satisfy the valency of Mo, V, Al, X, and Y.
摘要:
Methods for the catalytic production of vinyl acetate monomer from ethane, ethylene or an ethanelethylene mixture using a first catalyst containing MoVNbPd, MoVLaPdbX (where X is Al, Ga, Ge or Si) or MoVNbX (where X is P, B, Hf, Te, As or mixtures thereof) in the first step of oxidation and using a conventional VAM catalyst for the second step. The method produces high yields to acetic acid and vinyl acetate without the coproduction of carbon monoxide. Furthermore, the ethylene and acetic acid produced in the first step may be utilized in the second step for VAM production.
摘要:
A mixed metal oxide catalytic system comprising MoVNbPd or MoLaVPd providing higher selectivity and space time yield of acetic acid in the low temperature single stage oxidation of ethylene with molecular oxygen-containing gas and steam with very minimum or without the production of side products such as acetaldehyde, and methods of using the same.
摘要:
A mixed metal oxide catalytic system consisting of molybdenum, vanadium, palladium, lanthanum, niobium and X, wherein X is copper and/or chromium, providing higher yields of acrylic acid and acrolein in the low temperature oxidation of propylene with a molecular oxygen-containing gas without the production of side products such as CO.
摘要:
Methods for the catalytic production of vinyl acetate monomer from ethane, ethylene or an ethane/ethylene mixture using a first catalyst containing MoVNbPd, MoVLaPdNbX (where X is Al, Ga, Ge or Si) or MoVNbX (where X is P, B, Hf, Te, As or mixtures thereof) in the first step of oxidation and using a conventional VAM catalyst for the second step. The method produces high yields to acetic acid and vinyl acetate without the coproduction of carbon monoxide. Further-more, the ethylene and acetic acid produced in the first step may be utilized in the second step for VAM production
摘要:
A mixed metal oxide MoVLaPdNbXO catalytic system (wherein X=Al, Ga, Ge and/or Si) providing higher selectivity and space time yield of acetic acid at low pressure and low temperature in a single stage oxidation of ethane with a molecular oxygen-containing gas and steam.
摘要:
A mixed metal oxide Mo-V-Ga-Pd-Nb-X (where X=La, Te, Ge, Zn, Si, In or W) catalytic system providing a higher selectivity to acrylic acid in the low temperature partial oxidation of propane with a molecular oxygen-containing gas.
摘要:
An oxide catalyst comprising the elements Mo, V, Nb and Pd. The novel catalytic system provides both higher selectivity and yield of acetic acid in the low temperature one step vapor phase direct oxidation of ethane with molecular oxygen containing gas without production of side products such as ethylene and CO.
摘要:
Zeolites containing gallium in their crystalline framework structure are prepared by treating a zeolite material with a reagent capable of replacing a part of the aluminum of the framework structure of the zeolite material with the gallium. The method is especially applicable for the preparation of faujasitic materials of the formulaM.sub.(x+y/n) [ALO.sub.2 ].sub.x [GaO.sub.2 ].sub.y [SiO.sub.2 ].sub.zwherein:M is a charge balancing ion and n is the oxidation state thereof,x, y and z are the respective numbers of tetrahedra represented respectively by AlO.sub.2, GaO.sub.2 and SiO.sub.2,x+y+z=192, for a said faujasitic structure with no missing tetrahedra,x+y is from 0.1 to 71 inclusive, andy is from 0.01 to 60 inclusive.
摘要:
The present invention relates to a catalyst composition comprising cobalt manganese oxide which is modified with lanthanum and/or phosphorus and optionally one or more basic elements selected from the group consisting of alkali metal, alkaline earth metal and transition metal. Furthermore, a method for preparing said catalyst composition and a process for producing aliphatic and aromatic hydrocarbons by Fischer-Tropsch synthesis using said catalyst composition is provided.