Abstract:
A catheter system includes an inflatable structural balloon and collapsible filter. The collapsible filter is deployable into an expanded configuration using the inflatable distal balloon. In the expanded configuration, one or more flow cells are formed between inflated portions of the balloon to provide continuous fluid flow between proximal and distal ends of the structural balloon. In the expanded configuration, the filter is configured to prevent particulates (e.g., dislodged thrombus, or other particulate material) from migrating beyond the filter. In the expanded configuration, the inflated structural balloon biases a perimeter of the filter toward or against a subject vessel wall.
Abstract:
A high pressure medical connector tubing assembly includes a high pressure medical connector tubing assembly, including a tube element having opposed tube ends and a passageway, an end element overmolded to at least one of the opposed tube ends, the end element having an annular end portion having a preselected length, and a connector element having a connector hub defining a receiving cavity. The preselected length of the annular end portion may be used to pre-control the axial location of stress concentration in the connector hub. A method of forming the high pressure medical connector tubing assembly includes providing a tube element comprising opposed tube ends and a passageway therethrough, overmolding an end element onto at least one of the opposed tube ends, providing a connector element comprising a connector hub defining a receiving cavity, and securing the tube end with the overmolded end element in the receiving cavity.
Abstract:
Sealing connectors for use in connecting tubing to tubing, tubing to needles or other implements, syringe to tubing, or syringe to needles or other implements that provide reduced turbulence and sharp transitions are described herein.
Abstract:
Methods and systems for monitoring an automated radiopharmaceutical infusion apparatus are disclosed. A user interface graphically representing infusion apparatus components may be presented on a display device. Multiple sensors may be arranged within an infusion apparatus to measure property information associated with infusion apparatus components, including fluid pathways. The property information may include radioactivity and flow information. The property information may be compared with expected results. If the property information does not match the expected results, a fault condition may be indicated on the display device. The user interface may provide information and/or functions to manage the fault conditions.
Abstract:
A fluid delivery system includes a pressurizing mechanism. The pressurizing mechanism includes: a substantially cylindrical body having a movable member positioned therein that divides the body into a first chamber and a second chamber; a plunger rod connected to a first side of the movable member and extending through a substantially closed first end of the body; and an elongated member connected to a second side of the movable member and extending through a substantially closed second end of the body. The plunger rod configured to operatively engage a fluid container. Fluid is dispensed from the fluid container by forming a vacuum within at least the first chamber by moving the movable member toward the second end of the body, allowing atmospheric pressure to enter the second chamber, and actuating the pressurizing mechanism to cause the moving member to move towards the first end of the body.
Abstract:
Adjustable volume syringes and systems are disclosed. An adjustable volume syringe includes a delivery syringe barrel, a reservoir syringe barrel positioned at least partially within the delivery syringe barrel, and a reservoir plunger positioned at least partially within the reservoir syringe barrel. The delivery syringe barrel is configured to contain a first amount of a fluid. The reservoir syringe barrel is configured to contain a second amount of the fluid. A system includes the adjustable volume syringe, a dispensing module in communication with the syringe, and a processor in communication with the dispensing module. The processor may be configured to determine an administration amount of the fluid in the adjustable volume syringe, and transmit signals causing the dispensing module to adjust the volume of fluid in the syringe to the administration amount and deliver the administration amount by moving the reservoir syringe barrel with respect to the delivery syringe barrel.
Abstract:
A device for delivery of a radiopharmaceutical and delivery of a pharmaceutical agent are described. Various other components for delivery systems including tubing management systems, primer caps, diffusion chambers, radiation shields and syringe shields, needle handles, and other devices and methods are also described. Specifically, needle handles having a needle handle body attachable to a portion of a needle, and one or more wings or fins which are grasped by a user are described. The needle handle may be separated from the needle after insertion of the needle into a subject, and/or may provide access to a portion of tubing extending from the needle.
Abstract:
A bellows assembly for a fluid delivery system is a multi-component device that includes a cylindrical pressure jacket and a bellows syringe that is received within the pressure jacket. The bellows syringe includes a cap member and a bellows member. The bellows syringe in one embodiment is adapted to be secured to the pressure jacket by the cap member. The cap member is formed with a discharge port, which may be formed as conventional luer fitting. The discharge port is disposed coaxially within an annular wall on the outward facing side of the cap member and may be recessed within the annular wall. The bellows member is a hollow body that includes a series of bellows sections or rings. A distal end of the bellow member is formed with a discharge neck terminating in a discharge port, and the proximal end is formed with a closed end wall.
Abstract:
A syringe system and components thereof are disclosed. The system may include a syringe body having a hollow lumen, a proximal open end, and a distal end. The syringe body may be configured to house a fluid therein. The syringe system may further include a plunger positioned in the hollow lumen of the syringe body, forming a seal with an inner wall of the syringe body. The plunger may include a removable piston having a shaft extending from the distal end towards the proximal open end, a stopper removably connected to a distal portion of the shaft, and at least one coupler attached to the distal portion of the shaft. The stopper may be configured to slidably move within the hollow lumen to facilitate movement of the fluid within the syringe body. The coupler may be configured to facilitate removal and attachment of the stopper from the piston.
Abstract:
Various syringe systems are disclosed. One illustrative syringe system may include a syringe body having a hollow lumen and a distal end. The syringe body may be configured to house a plurality of fluids therein. A first plunger may be positioned in the hollow lumen of the syringe body, forming a first seal with an inner wall of the syringe body, and forming a first compartment between the first plunger and the distal end of the syringe. A second plunger may be positioned proximal to the first plunger in the hollow lumen of the syringe body, forming a second seal with the inner wall of the syringe body, and forming a second compartment between the first plunger and the second plunger. A plurality of recesses may be disposed about the inner wall of the syringe body near the distal end of the syringe body.