Abstract:
A method and apparatus for generating a patient treatment plan includes processing that begins by providing a list of health care services to a patient and/or care provider. The processing continues by prompting for input of digital information regarding the patient when health care services applicable to addressing the patient's treatment needs have been concurrently selected. The processing continues by determining whether a sufficient amount of digital information has been received. If so, the processing continues by simulating treatment of a patient based on the digital information, a treatment objective, and normalized patient data. The processing then continues by generating the patient treatment plan in accordance with the simulating of the treatment when the simulated treatment results have been acknowledged.
Abstract:
A self-ligating orthodontic bracket comprised of a ligating member containing a coil spring segment for extending the ligating member over an archwire or retainer wire and over one or more tie wings to secure the archwire or retainer wire in the bottom of a slot in the bracket. The ligating member containing the coil spring may have ends that are engaged in opposing mesially-distally extending bores in one side of the bracket body, with the ligating member being engaged with one or more tie wings on an opposite side of the bracket body. Alternatively, the ligating member may form a closed loop with the ligating member engaged under both occlusally-projecting and gingivally-projecting tie wings or engaged under one or more tie wings on one side of the bracket body and passing through a mesially-distally extending bore on the opposite side of the bracket body.
Abstract:
Method and device for fracturing the interface between dental structures that have been secured together, and for adhesive removal and cleaning of the teeth. The device comprises an ultrasonic tool for providing hi-directional movement of a preferred amplitude and frequency. The tool is applied against one of the dental structures at an acute angle with respect to a plane in which the interface between the dental structures lies. Alternatively, the dental tool is applied against the adhesive on the tooth surface for removal thereof. In another alternative, the dental tool is utilized with a liquid layer to provide cavitation of the liquid, thereby cleaning and polishing the enamel surface.
Abstract:
By using titanium, titanium based alloys, or related metals or alloys, an orthodontic bracket can be manufactured which is lighter and stronger than any conventional type of bracket made of stainless steels, plastics and even ceramics. Ti based brackets have shown excellent corrosion resistance and possess good biocompatibility. Surface treatments including nitriding, diamond coating, pre-oxidation or shot-peening on the slot bottom surface of such brackets reduce the friction coefficient against the orthodontic archwire. Furthermore, the bonding strength may be enhanced by shot-peening, ion beam etching or reactive ion etching on the tooth contact surface of the base portion of the bracket.
Abstract:
A series of medical instruments can be made with the use of shape memory tube with a transformation temperature that is above or below the ambient temperature. In the first case, the material behaves with the shape memory effect and in the second case the behavior is superelastic. The wall of the tube has been provided with a plurality of slots in specific places, often near or at the distal end of the instrument, and in specific arrangements which allow local variations in diameter, shape, and/or length. These variations can either be caused by the memory effect during temperature change or by superelastic behavior during change of the mechanical influences on the memory metal by the surrounding material.
Abstract:
A method of processing a Ni—Ti—Nb based alloy which contains from about 4 to about 14 atomic percent Nb and in which the ratio of atomic percent Ni to atomic percent Ti is from about 3.8 to 1.2, comprising working the alloy sufficient to impart a textured structure to the alloy, at a temperature below the recrystallisation temperature of the alloy. Preferably, the alloy is worked at least 10%, by a technique such as rolling or drawing, or another technique which produces a similar crystal structure. The alloy has increased stiffness compared with Ni—Ti binary alloys with superelastic properties.
Abstract:
An orthodontic appliance made of a shape memory alloy comprising of a nickel, titanium, and copper composition which is formulated to provide the desired loading and unloading forces to the bracket.
Abstract:
An orthodontic bracket having a slot formed by arm parts facing each other in the vertical direction, and an inner part, inserted into the slot, having a socket for holding a wire is disclosed. The shape of the socket is designed for applying desired forces to a tooth through the wire when the bracket is attached to the tooth. Forces can be changed simply by changing the inner part; replacing the bracket attached to the tooth. When the inner part is inserted into the slot, the inner part closes the slot and it is held in the position by the arm parts; enabling the wire to be securely held in its position.
Abstract:
A series of medical instruments can be made with the use of shape memory tube with a transformation temperature that is above or below the ambient temperature. In the first case, the material behaves with the shape memory effect and in the second case the behavior is superelastic. The wall of the tube has been provided with a plurality of slots in specific places, often near or at the distal end of the instrument, and in specific arrangements which allow local variations in diameter, shape, and/or length. These variations can either be caused by the memory effect during temperature change or by superelastic behavior during change of the mechanical influences on the memory metal by the surrounding material.
Abstract:
A method and apparatus for generating a patient treatment plan includes processing that begins by providing a list of health care services to a patient and/or care provider. The processing continues by prompting for input of digital information regarding the patient when health care services applicable to addressing the patient's treatment needs have been concurrently selected. The processing continues by determining whether a sufficient amount of digital information has been received. If so, the processing continues by simulating treatment of a patient based on the digital information, a treatment objective, and normalized patient data. The processing then continues by generating the patient treatment plan in accordance with the simulating of the treatment when the simulated treatment results have been acknowledged.