Abstract:
A communication system and a method of communicating data. A first backhaul site can be dynamically selected from a plurality of backhaul sites that are each configured to wirelessly communicate with an access point. A controller can dynamically configure a transmission parameter used to communicate a first backhaul data stream between the access point and the first backhaul site. The first backhaul data stream can be derived from a source data stream and can be wirelessly communicated between the access point and the first backhaul site. A second backhaul site also can be selected. A second backhaul data stream also can be derived from the source data stream and wirelessly communicated between the access point and the second backhaul site. The first and second backhaul data streams can be combined.
Abstract:
A communication system and a method of communicating data. A first backhaul site can be dynamically selected from a plurality of backhaul sites that are each configured to wirelessly communicate with an access point. A controller can dynamically configure a transmission parameter used to communicate a first backhaul data stream between the access point and the first backhaul site. The first backhaul data stream can be derived from a source data stream and can be wirelessly communicated between the access point and the first backhaul site. A second backhaul site also can be selected. A second backhaul data stream also can be derived from the source data stream and wirelessly communicated between the access point and the second backhaul site. The first and second backhaul data streams can be combined.
Abstract:
A gas pressure regulator (100) includes a mechanical primary stage (102), preferably including a spring valve, and an electronic secondary stage (104), preferably including a micromachined pressure regulator, the combination of the mechanical primary stage and the electronic secondary stage suitable for relatively precise low pressure near zero flow rates with reasonable energy consumption rates, such as encountered when supplying fuel to a low power fuel cell system.
Abstract:
Rewritable signs (100, 1300) that include bistable cholesteric liquid crystal layers (102, 1402, 1404, 1406) are provided. According to one embodiment a rewritable sign (100) is devoid of circuitry for establishing electric fields in localize regions for writing information to the rewritable sign (100), and is consequently inexpensive. In the latter embodiment, a separate information writer (400) that includes an array of pixel electrodes (404) that is driven by an active matrix (602) is used to write information on the rewritable sign. According to another embodiment a rewritable sign (1300) includes three cholesteric liquid layers (1402, 1404, 1406) each of which reflects a different primary color. The three cholesteric liquid crystal layers (1402, 1404, 1406) are interleaved with sets of conductive lines (1316, 1320, 1322, 1324) that are used to apply signals to the cholesteric liquid crystal layers (1402, 1404, 1406) for the purpose of writing information.
Abstract:
An electronic device (100) is provided with a plurality of activatable indicia (112, 114, 116, 118, 120, 122, 1102) that are located proximate keys buttons (108, 109, 110) that are used to control the communication device (100). The activatable indicia (112, 114, 116, 118, 120, 122, 1102) are activated in order to identify to a user one or more of the buttons (108, 109 110) to be pressed in order to in the course of entering a command, or to indicate to the user to reorient an antenna of the electronic device in order to improve signal strength.
Abstract:
A membrane electrode assembly consists of a polymer electrolyte membrane (100) with an electrode on each side. The polymer electrolyte membrane has an integral sensor (115) disposed on the surface. The sensor monitors the physical, thermal, chemical or electrical state of the membrane electrode assembly. Information obtained from the sensor is used to identify a defective membrane electrode assembly, and the operation of the fuel cell is altered based on the identified defective membrane electrode assembly.
Abstract:
A communication device is designed to contain the lowest possible level of toxic or hazardous materials, so that when it is eventually disposed of, it will not harm the environment and can be safely recycled. Each component A.sub.1, A.sub.2, . . . , A.sub.n in the communication device has a calculated Component Toxicity Index value. A Product Toxicity Index for the entire communication device is calculated by summing the individual Component Toxicity Index values. The desired outcome is a communication device having a Product Toxicity Index less than or equal to 100. The resulting communication device is referred to as "environmentally friendly". The communication device may be a two-way radio (10), and some of the components are a radio transmitter (12), a radio receiver (14), an antenna (16), an amplifier (18), a battery (20) and a housing (22).
Abstract:
An improved leadless semiconductor device package consists of a molded plastic carrier (30) with a plurality of C5 bumps (52) integrally molded into the bottom side of the carrier. The bumps are made of the same plastic as the carrier and are monolithic to the carrier. The C5 bumps are coated with a solderable material (50) so that they can be connected to pads on a PCB with solder paste. The top side of the plastic carrier has a metallization pattern containing a plurality of bond pads (44) that correspond to pads on the semiconductor die, and the bond pads are electrically connected to the C5 bumps by an electrically conductive structure. A semiconductor die (38) is mounted on the carrier top side and electrically connected to the plurality of bond pads, either by wire bonds (54) or by flip chip bonding. C4 bumps (70) can also be molded into the carrier for flip chip attachment.
Abstract:
A method and an apparatus are provided for use in a user device for limiting the ability of the terminal of the user device to replay protected content. The low-level key that is used by the decryption component of the terminal to decrypt content is transient in that it expires if at least one predetermined expiration criteria is met. After they key has expired, it is no longer valid and thus cannot be used by the decryption component to decrypt protected content. Limiting the ability of the terminal to replay protected content is preferably accomplished in a way that does not affect the ability of the terminal to play and replay unprotected content.
Abstract:
Techniques are provided for allowing a node (300) in an ad hoc network to deterministically decide whether to relay broadcast information to another node in the ad hoc network. The node (300) receives broadcast information and measures received signal strength (RSS) of the broadcast information. The node (300) may determine if the measured RSS is below a low threshold, and if so, can relay the broadcast information to neighbor nodes. Otherwise, the node (300) can also determine if the measured RSS is above a high threshold, and if not, wait for a waiting period before relaying the broadcast information to the neighbor nodes. The node (300) may dynamically adjust the low threshold by decreasing the low threshold as the number of neighbor nodes increases and may dynamically adjust the high threshold by increasing the high threshold as the number of neighbor nodes decreases.