摘要:
The semiconductor integrated communication circuit includes:a low-noise amplifier; a receive mixer; a receive VCO; a demodulation-processing circuit; a modulation-processing circuit; a transmit mixer; a transmit VCO; a second-order-distortion-characteristic-calibration circuit; a quadrature-receive-signal-calibration circuit; and a test-signal generator. The test-signal generator generates first and second test signals using the transmit VCO. In the second-order-distortion-characteristic-calibration mode, the second-order-distortion-characteristic-calibration circuit variably changes an operation parameter of the receive mixer thereby to calibrate the second-order distortion characteristic to achieve its best condition while the first test signal is supplied to the receive mixer. In the quadrature-receive-signal-calibration mode, the quadrature-receive-signal-calibration circuit calibrates IQ mismatch of a quadrature receive signal to achieve the best condition thereof while the second test signal is supplied to the receive mixer. The integrated communication circuit can minimize the increase in chip footprint of a test-signal-generating circuit used to perform calibrations of both the second-order characteristic and IQ mismatch.
摘要:
Disclosed are a semiconductor integrated circuit device and a wireless communication system that are capable of improving reception sensitivity. The wireless communication system includes, for instance, a first duplexer, a second duplexer, a first low-noise amplifier circuit, and a second low-noise amplifier circuit. A transmission band compliant with a communication standard is split into two segments for use, namely, low- and high-frequency transmission bands. A reception band compliant with the communication standard is split into two segments for use, namely, low- and high-frequency reception bands. The first duplexer uses the low-frequency transmission band and low-frequency reception band as passbands. The second duplexer uses the high-frequency transmission band and high-frequency reception band as passbands. A signal received from the first duplexer and a signal received from the second duplexer are respectively amplified by the first and the second low-noise amplifier circuits, which are respectively provided to handle such signals.
摘要:
There is provided a radio frequency circuit device for multi-band and multi-mode which is low in a circuit loss, and a mobile communication terminal using the radio frequency circuit device. The radio frequency circuit device has a first path 110 that includes an amplifier 10a that amplifies signals of at least two modulation techniques in power, a matching network 20 that is connected to the amplifier and a duplexer 50 and allows the matching network to be coupled with an antenna, and a second path 111 that does not include the duplexer and allows the matching network to be coupled with the antenna. The first path is selected when the amplifier amplifies one of the signals of at least two modulation techniques, and the second path is selected when the amplifier amplifies another signal. An output impedance of the amplifier is matched with an impedance when viewing the antenna side from the amplifier in the first path and the second path.
摘要:
A quadrature modulator has first to fourth transistors, a first node, a second node, and a first output node. A non-inversion in-phase analog signal, an inversion in-phase analog signal, a non-inversion quadrature analog signal, and an inversion quadrature analog signal are supplied to input electrodes of the first to fourth transistors, respectively. Control electrodes of the first to fourth transistors respond to a non-inversion in-phase RF signal, an inversion in-phase RF signal, a non-inversion quadrature RF signal, and an inversion quadrature RF signal, respectively. Output electrodes of the first and second transistors are coupled to the first node, and output electrodes of the third and fourth transistors are coupled to the second node. A first high-pass filter is coupled between the first node and the first output node, and a second high-pass filter is coupled between the second node and the first output node.
摘要:
A wireless receiving circuit having an analog-digital converter of digital calibration type constituted by plural analog-digital converter units, shares portions about digital calibration, and applies the result of calibration of one analog-digital converter unit to other analog-digital converter units to appropriately perform each digital calibration of the plural analog-digital converter units. For example, in a wireless receiving circuit having an analog-digital converter of digital calibration type constituted of an analog-digital converter unit of I side and an analog-digital converter unit of Q side, portions about digital calibration are shared, and a calibration result of I side is applied to Q side.
摘要:
A communication semiconductor integrated circuit includes a phase control loop and an amplitude control loop. A gain of a variable gain amplifier when it is detected from an output of the comparator that the amplitudes of the reference signal and the feedback signal are equal to each other while a predetermined DC voltage is applied to an amplifier which amplifies an output of a transmission oscillation circuit and is controlled by the amplitude control loop to vary the gain of the variable gain amplifier on a feedback path is held in a register. Thereafter, the DC voltage is changed to another value to detect the gain of the variable gain amplifier, so that the gain of a variable gain amplifier on the forward path is decided on the basis of the detected gain and the gain held in the register.
摘要:
There is provided a radio frequency circuit device for multi-band and multi-mode which is low in a circuit loss, and a mobile communication terminal using the radio frequency circuit device. The radio frequency circuit device has a first path 110 that includes an amplifier 10a that amplifies signals of at least two modulation techniques in power, a matching network 20 that is connected to the amplifier and a duplexer 50 and allows the matching network to be coupled with an antenna, and a second path 111 that does not include the duplexer and allows the matching network to be coupled with the antenna. The first path is selected when the amplifier amplifies one of the signals of at least two modulation techniques, and the second path is selected when the amplifier amplifies another signal. An output impedance of the amplifier is matched with an impedance when viewing the antenna side from the amplifier in the first path and the second path.
摘要:
In a wireless chip receiving the multi-rate data according to the related art, power consumption and a circuit area of an analog-to-digital converter become large. In a digital calibration type analog-to-digital converter including both a reference analog-to-digital conversion unit and a main analog-to-digital conversion unit, when processing the high-sample rate wireless receive signal, both the reference analog-to-digital conversion unit and the main analog-to-digital conversion unit are operated to configure a general digital calibration type analog-to-digital converter, and when processing a low-sample rate wireless receive signal, analog-to-digital conversion is performed by using the reference analog-to-digital conversion unit and operations of the main analog-to-digital conversion unit or the like are stopped to remarkably reduce power consumption.
摘要:
A transceiver suitable for larger scale of integration employs direct conversion reception for reducing the number of filters. Also, the number of VCOs is reduced by utilizing dividers to supply a receiver and a transmitter with locally oscillated signals at an RF band. Dividers each having a fixed division ratio are used for generating locally oscillated signals for the receiver, while a divider having a switchable division ratio are used for generating the locally oscillated signal for the transmitter. In addition, a variable gain amplifier for baseband signal is provided with a DC offset voltage detector and a DC offset canceling circuit for supporting high speed data communications to accomplish fast cancellation of a DC offset by eliminating intervention of a filter within a feedback loop for offset cancellation.
摘要:
The present invention provides a semiconductor integrated circuit capable of reducing a chip occupied area and reducing variations in control gain of a digitally controlled oscillator. The semiconductor integrated circuit is equipped with the digitally controlled oscillator. The digitally controlled oscillator comprises oscillation transistors and a resonant circuit. The resonant circuit comprises inductances, a frequency coarse-tuning variable capacitor array and a frequency fine-tuning variable capacitor array. The frequency coarse-tuning variable capacitor array comprises a plurality of coarse-tuning capacitor unit cells. The frequency fine-tuning variable capacitor array comprises a plurality of fine-tuning capacitor unit cells. The capacitance values of the coarse-tuning capacitor unit cells of the frequency coarse-tuning variable capacitor array are set in accordance with a binary weight 2M−1. The capacitance values of the fine-tuning capacitor unit cells of the frequency fine-tuning variable capacitor array are also set in accordance with a binary weight 2N−1.