Abstract:
A yaw rate sensor is described which includes a drive device, at least one Coriolis element, and a detection device having at least two detection elements which are coupled to one another with the aid of a coupling device, the drive device being connected to the Coriolis element for driving a vibration of the Coriolis element, and an additional coupling device which is connected to the detection device and to the Coriolis element for coupling a deflection in the plane of vibration of the Coriolis element to the detection device in a direction orthogonal to the vibration.
Abstract:
A yaw-rate sensor and a method for operating a yaw-rate sensor having a first Coriolis element and a second Coriolis element are proposed, the yaw-rate sensor having a substrate having a main plane of extension, the yaw-rate sensor having a first drive element for driving the first Coriolis element in parallel to a second axis, the yaw-rate sensor having a second drive element for driving the second Coriolis element in parallel to the second axis, the yaw-rate sensor having detection means for detecting deflections of the first Coriolis element and of the second Coriolis element in parallel to a first axis due to a Coriolis force, the second axis being situated perpendicularly to the first axis, the first and second axis being situated in parallel to the main plane of extension, the first and second drive elements being mechanically coupled to each other via a drive coupling element.
Abstract:
The disclosure relates to a micromechanical rotary acceleration sensor including a substrate with at least one anchoring device and at least two flywheel masses. At least one of the flywheel masses is connected to at least one anchoring device by means of a coupling element. The at least one anchoring device is designed in such a manner that the at least two flywheel masses are elastically deflectable from a respective rest position about at least one axis of rotation. The at least two flywheel masses is designed in such a manner that they have different natural frequencies.
Abstract:
A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, means being provided for exciting the movable substructures into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, means being provided for detecting deflections of the Coriolis elements induced by a Coriolis force, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
Abstract:
A method for adjusting an acceleration sensor which includes a substrate and a seismic mass, the acceleration sensor having first and further first electrodes attached to the substrate on a first side, counter-electrodes of the seismic mass being situated between the first and further first electrodes, the acceleration sensor having further second electrodes on a second side and further fourth electrodes on a fourth side opposite the second side, an essentially equal first excitation voltage being applied to the first and further first electrodes in a first step for exciting a first deflection of the seismic mass along a first direction, the first deflection being compensated in a second step by applying a first compensation voltage to the further second and further fourth electrodes.
Abstract:
A capacitive pressure sensor made up of two silicon on insulator (SOI) wafers lying opposite of each other and joined to each other in a vacuum-tight manner, a recess being formed between the two wafers. The first wafer exclusively supports the evaluation circuits required for measuring the applied pressure and a capacitive electrode, and the second wafer has a recess formed by surface micromechanics processes, in which the counter electrode to the capacitive electrode of the first wafer is situated. The second wafer at the same time forms a cover for the first wafer.
Abstract:
A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, means being provided for exciting the movable substructures into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, means being provided for detecting deflections of the Coriolis elements induced by a Coriolis force, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
Abstract:
A yaw rate sensor includes: at least one Coriolis element; a drive device connected to the Coriolis element and configured to drive a vibration of the Coriolis element; a detection device having at least one rotor; and a coupling device connected to the detection device and to the Coriolis element. The coupling device is configured to couple a deflection in the plane of vibration of the Coriolis element to the detection device in a direction orthogonal to the vibration, so that when the Coriolis element is deflected a torque for driving the at least one rotor is transmitted from the Coriolis element to the at least one rotor.
Abstract:
A rotational rate sensor includes: a substrate having a main plane of extension; a first Coriolis element; and a second Coriolis element. The first Coriolis element and the second Coriolis element have a first and a second center of gravity, respectively, and the elements are drivable along a drive direction. In the idle state of the rotational rate sensor, (i) the distance between the first center of gravity and the second center of gravity along the detection direction is less than a first value, and (ii) the distance between the first center of gravity and the second center of gravity along the third direction is less than a second value.
Abstract:
A rotation rate sensor includes: a mounting device; a first drive frame having a drive, which is designed to set the first drive frame into a first oscillatory motion along an axis of oscillation relative to the mounting device; a first stator electrode; a first actuator electrode coupled to the first drive frame in such a way that in a rotary motion of the rotation rate sensor due to a Coriolis force, the first actuator electrode being displaceable in a first deflection direction relative to the first stator electrode; and an evaluation device configured to determine a voltage applied between the first stator electrode and the first actuator electrode, and to specify information regarding the rotary motion of the rotation rate sensor while taking the determined voltage value into account.