Abstract:
A method for manufacturing a CIGS thin film photovoltaic device includes forming a back contact layer on a substrate, forming an Se-rich layer on the back contact layer, forming a precursor layer on the Se-rich layer by depositing copper, gallium and indium resulting in a first interim structure, annealing or selenizing the first interim structure, thereby forming Cu/Se, Ga/Se or CIGS compounds along the interface between the back contact layer and the precursor layer and resulting in a second interim structure, and selenizing the second interim structure, thereby converting the precursor layer into a CIGS absorber layer on the back contact layer.
Abstract:
The present invention is related to a keyboard having a key-in area integrated with a touch sensor device and a method thereof by providing at least one touch sensor device at a key location within the key-in area of a keyboard main body, and electrically connecting the touch sensor device to the keyboard main body to transmit a signal via the keyboard main body. With the method of integrating a key-in area of a keyboard with a touch sensor device provided by the present invention, the keyboard and the pointing device can be integrated altogether as one such that the operation and control efficiency thereof is advantageously enhanced and is adapted for various application environments and practical usages.
Abstract:
A thin film solar cell and process for forming the same. The solar cell includes a bottom electrode layer, semiconductor light absorbing layer, top electrode layer, and a protective moisture barrier layer. In some embodiments, the barrier layer is formed of a water-insoluble material. The barrier layer helps protect the top electrode layer from exposure and damage caused by water and oxygen.
Abstract:
Sulfur-containing chalcogenide absorbers in thin film solar cell are manufactured by sequential sputtering or co-sputtering targets, one of which contains a sulfur compound, onto a substrate and then annealing the substrate. The anneal is performed in a non-sulfur containing environment and avoids the use of hazardous hydrogen sulfide gas. A sulfurized chalcogenide is formed having a sulfur concentration gradient.
Abstract:
A semiconductor structure includes a semiconductor substrate; a gate dielectric over the semiconductor substrate; a gate electrode over the gate dielectric; a source/drain region adjacent the gate dielectric; a silicide region on the source/drain region; a metal layer on top of, and physical contacting, the silicide region; an inter-layer dielectric (ILD) over the metal layer; and a contact opening in the ILD. The metal layer is exposed through the contact opening. The metal layer further extends under the ILD. The semiconductor structure further includes a contact in the contact opening.
Abstract:
A semiconductor structure includes a semiconductor substrate, and an NMOS device at a surface of the semiconductor substrate, wherein the NMOS device comprises a Schottky source/drain extension region. The semiconductor structure further includes a PMOS device at the surface of the semiconductor substrate, wherein the PMOS device comprises a source/drain extension region comprising only non-metal materials. Schottky source/drain extension regions may be formed for both PMOS and NMOS devices, wherein the Schottky barrier height of the PMOS device is reduced by forming the PMOS device over a semiconductor layer having a low valence band.
Abstract:
A semiconductor device and method for manufacturing a tensile strained NMOS and a compressive strained PMOS transistor pair, wherein a stressor material is sacrificial is disclosed. The method provides for a substrate, which includes a source/drain for an NMOS transistor, and a PMOS transistor. A first barrier layer is formed on the substrate and a first stressor material is formed on the first barrier layer. The first barrier layer is selectively removed from the PMOS transistor. The substrate is flash annealed and the remaining first stressor material and barrier layer is removed from the substrate.
Abstract:
A gate-last method for forming a metal gate transistor is provided. The method includes forming an opening within a dielectric material over a substrate. A gate dielectric structure is formed within the opening and over the substrate. A work function metallic layer is formed within the opening and over the gate dielectric structure. A silicide structure is formed over the work function metallic layer.
Abstract:
A BiCMOS device with enhanced performance by mechanical uniaxial strain is provided. A first embodiment of the present invention includes an NMOS transistor, a PMOS transistor, and a bipolar transistor formed on different areas of the substrate. A first contact etch stop layer with tensile stress is formed over the NMOS transistor, and a second contact etch stop layer with compressive stress is formed over the PMOS transistor and the bipolar transistor, allowing for an enhancement of each device. Another embodiment has, in addition to the stressed contact etch stop layers, strained channel regions in the PMOS transistor and the NMOS transistor, and a strained base in the BJT.
Abstract:
An electromagnetic shielding composite includes a polymer and a plurality of carbon nanotubes disposed in the polymer in a form of carbon nanotube film structure. A method for making an electromagnetic shielding composite includes the steps of: (a) providing an array of carbon nanotubes; (b) drawing a carbon nanotube film from the array of carbon nanotubes; (c) providing a substrate, covering at least one carbon nanotube film on the substrate to form a carbon nanotube film structure; and (d) providing a polymer and combining the carbon nanotube film structure with the polymer to form an electromagnetic shielding composite.