Abstract:
Electronic devices have a PCB with a heat-generating component (e.g., POP or SOC), a heat sink, and an EMI shielding structure. A combination structure can include a top heat spreader/EMI shield located above and in thermal contact with the POP/SOC top, a bottom heat spreader/EMI shield located below and in thermal contact with the POP/SOC bottom, and a heat-directing component located on the PCB, laterally surrounding a majority of the POP/SOC sides, and between and in thermal contact with the top and bottom heat spreaders. Resulting heat paths for the POP/SOC include one through its top to the top heat spreader, another through its bottom to the bottom heat spreader, and others through its sides through the PCB through the heat-directing component to the top and bottom heat spreaders. The heat-directing component can be a metal horseshoe shaped pad integrally formed onto the PCB.
Abstract:
An electronic device may have a hard disk drive mounted diagonally within a housing. Electromagnetic interference shielding structures may enclose the hard disk drive. The shielding structures may include conductive elastomeric structures. A printed circuit board may be mounted diagonally in parallel with the hard disk drive. Connectors on the printed circuit board may be angled away from the printed circuit board at a non-zero angle and may be retained against the housing with a slide and lock connector retention member. An accelerometer may detect when the device is tipped over so that control circuitry may protect the hard disk drive. A fan may cause air to flow upwards on one side of the device and downwards on the other side of the device. The housing may rest on housing support structures with angled air vents and integral elastomeric feet.
Abstract:
Electronic devices have a PCB with a heat-generating component (e.g., POP or SOC), a heat sink, and an EMI shielding structure. A combination structure can include a top heat spreader/EMI shield located above and in thermal contact with the POP/SOC top, a bottom heat spreader/EMI shield located below and in thermal contact with the POP/SOC bottom, and a heat-directing component located on the PCB, laterally surrounding a majority of the POP/SOC sides, and between and in thermal contact with the top and bottom heat spreaders. Resulting heat paths for the POP/SOC include one through its top to the top heat spreader, another through its bottom to the bottom heat spreader, and others through its sides through the PCB through the heat-directing component to the top and bottom heat spreaders. The heat-directing component can be a metal horseshoe shaped pad integrally formed onto the PCB.
Abstract:
An electronic device may have a hard disk drive mounted diagonally within a housing. Electromagnetic interference shielding structures may enclose the hard disk drive. The shielding structures may include conductive elastomeric structures. A printed circuit board may be mounted diagonally in parallel with the hard disk drive. Connectors on the printed circuit board may be angled away from the printed circuit board at a non-zero angle and may be retained against the housing with a slide and lock connector retention member. An accelerometer may detect when the device is tipped over so that control circuitry may protect the hard disk drive. A fan may cause air to flow upwards on one side of the device and downwards on the other side of the device. The housing may rest on housing support structures with angled air vents and integral elastomeric feet.
Abstract:
An electronic device includes an outer housing having an upper enclosure and a foot coupled thereto, a heat generating component, and a fan assembly integrated into the foot and situated proximate a bottom surface of the heat generating component. The foot can include inlet and outlet vents. The fan assembly can include an inlet, outlet, impeller with blades, shroud and fin stack. The electronic device can also include a heat pipe, a heat transfer stage, a PCB, and a bottom shield. Airflow through the electronic device can be directed across the fin stack, heat pipe, heat transfer stage, and bottom shield. Airflow can occur over a substantially level path through the electronic device from the inlet to outlet vents.
Abstract:
Electronic devices have a PCB with a heat-generating component (e.g., POP or SOC), a heat sink, and an EMI shielding structure. A combination structure can include a top heat spreader/EMI shield located above and in thermal contact with the POP/SOC top, a bottom heat spreader/EMI shield located below and in thermal contact with the POP/SOC bottom, and a heat-directing component located on the PCB, laterally surrounding a majority of the POP/SOC sides, and between and in thermal contact with the top and bottom heat spreaders. Resulting heat paths for the POP/SOC include one through its top to the top heat spreader, another through its bottom to the bottom heat spreader, and others through its sides through the PCB through the heat-directing component to the top and bottom heat spreaders. The heat-directing component can be a metal horseshoe shaped pad integrally formed onto the PCB.
Abstract:
An electronic device includes an outer housing having an upper enclosure and a foot coupled thereto, a heat generating component, and a fan assembly integrated into the foot and situated proximate a bottom surface of the heat generating component. The foot can include inlet and outlet vents. The fan assembly can include an inlet, outlet, impeller with blades, shroud and fin stack. The electronic device can also include a heat pipe, a heat transfer stage, a PCB, and a bottom shield. Airflow through the electronic device can be directed across the fin stack, heat pipe, heat transfer stage, and bottom shield. Airflow can occur over a substantially level path through the electronic device from the inlet to outlet vents.
Abstract:
An electronic device may have a hard disk drive mounted diagonally within a housing. Electromagnetic interference shielding structures may enclose the hard disk drive. The shielding structures may include conductive elastomeric structures. A printed circuit board may be mounted diagonally in parallel with the hard disk drive. Connectors on the printed circuit board may be angled away from the printed circuit board at a non-zero angle and may be retained against the housing with a slide and lock connector retention member. An accelerometer may detect when the device is tipped over so that control circuitry may protect the hard disk drive. A fan may cause air to flow upwards on one side of the device and downwards on the other side of the device. The housing may rest on housing support structures with angled air vents and integral elastomeric feet.
Abstract:
An electronic device includes an outer housing having an upper enclosure and a foot coupled thereto, a heat generating component, and a fan assembly integrated into the foot and situated proximate a bottom surface of the heat generating component. The foot can include inlet and outlet vents. The fan assembly can include an inlet, outlet, impeller with blades, shroud and fin stack. The electronic device can also include a heat pipe, a heat transfer stage, a PCB, and a bottom shield. Airflow through the electronic device can be directed across the fin stack, heat pipe, heat transfer stage, and bottom shield. Airflow can occur over a substantially level path through the electronic device from the inlet to outlet vents.
Abstract:
An electronic device includes an outer housing having an upper enclosure and a foot coupled thereto, a heat generating component, and a fan assembly integrated into the foot and situated proximate a bottom surface of the heat generating component. The foot can include inlet and outlet vents. The fan assembly can include an inlet, outlet, impeller with blades, shroud and fin stack. The electronic device can also include a heat pipe, a heat transfer stage, a PCB, and a bottom shield. Airflow through the electronic device can be directed across the fin stack, heat pipe, heat transfer stage, and bottom shield. Airflow can occur over a substantially level path through the electronic device from the inlet to outlet vents.