Abstract:
Embodiments described herein generally provide a method for performing a semiconductor precleaning process. More specifically, embodiments provided herein relate to boron ionization for aluminum oxide etch enhancement. A process for removing native oxide from aluminum may utilize ionized boron alone or in combination with a halogen plasma. The ionized boron may provide improved aluminum oxide etching properties while being highly selective for native oxides more generally.
Abstract:
Methods for forming a liner layer are provided herein. In some embodiments, a method of forming a liner layer on a substrate disposed in a process chamber, the substrate having an opening formed in a first surface of the substrate, the opening having a sidewall and a bottom surface, the method includes exposing the substrate to a cobalt precursor gas and to a ruthenium precursor gas to form a cobalt-ruthenium liner layer on the first surface of the substrate and on the sidewall and bottom surface of the opening.
Abstract:
Methods for forming metal organic tungsten for middle-of-the-line (MOL) applications are provided herein. In some embodiments, a method of processing a substrate includes providing a substrate to a process chamber, wherein the substrate includes a feature formed in a first surface of a dielectric layer of the substrate; exposing the substrate to a plasma formed from a first gas comprising a metal organic tungsten precursor to form a tungsten barrier layer atop the dielectric layer and within the feature, wherein a temperature of the process chamber during formation of the tungsten barrier layer is less than about 225 degrees Celsius; and depositing a tungsten fill layer over the tungsten barrier layer to fill the feature to the first surface.
Abstract:
Methods for forming a liner layer are provided herein. In some embodiments, a method of forming a liner layer on a substrate disposed in a process chamber, the substrate having an opening formed in a first surface of the substrate, the opening having a sidewall and a bottom surface, the method includes exposing the substrate to a cobalt precursor gas and to a ruthenium precursor gas to form a cobalt-ruthenium liner layer on the first surface of the substrate and on the sidewall and bottom surface of the opening.