Abstract:
Systems and methods discussed herein are directed towards processing of substrates, including forming a plurality of features in a target layer on a substrate. The formation of the plurality of features includes a main etch operation that forms the plurality of features to a first depth in the target layer. The main etch operation is followed by a phase shift sync pulsing (PSSP) operation, and these two operations are repeated iteratively to form the features to a predetermined depth. The PSSP operation includes one or more cycles of RF source power and RF bias power, this cycle deposits a protective coating in and on the features and then etches a portion of the protective coating to expose portions of the feature.
Abstract:
Embodiments of the disclosure generally relate to methods of removing etch by-products from the plasma processing chamber using carbon monoxide or carbon dioxide. In one embodiment, a method for dry cleaning a processing chamber includes exposing a chamber component disposed within the processing chamber in absence of a substrate disposed therein to a first cleaning gas mixture comprising carbon monoxide or carbon dioxide, wherein a portion of the chamber component has a film layer or residues deposited thereon, and the film layer or residues comprises a refractory metal and/or a metal silicide.
Abstract:
A layer stack over a substrate is etched using a photoresist pattern deposited on the layer stack as a first mask. The photoresist pattern is in-situ cured using plasma. At least a portion of the photoresist pattern can be modified by curing. In one embodiment, silicon by-products are formed on the photoresist pattern from the plasma. In another embodiment, a carbon from the plasma is embedded into the photoresist pattern. In yet another embodiment, the plasma produces an ultraviolet light to cure the photoresist pattern. The cured photoresist pattern is slimmed. The layer stack is etched using the slimmed photoresist pattern as a second mask.
Abstract:
In some embodiments, a method of forming a three dimensional NAND structure atop a substrate may include providing to a process chamber a substrate having alternating nitride layers and oxide layers or alternating polycrystalline silicon layers and oxide layers formed atop the substrate and a photoresist layer formed atop the alternating layers; etching the photoresist layer to expose at least a portion of the alternating nitride layers and oxide layers or alternating polycrystalline silicon layers and oxide layers; providing a process gas comprising sulfur hexafluoride (SF6), carbon tetrafluoride (CF4), and oxygen (O2) to the process chamber; providing an RF power of about 4 kW to about 6 kW to an RF coil to ignite the process gas to form a plasma; and etching through a desired number of the alternating layers to form a feature of a NAND structure.
Abstract:
A layer stack over a substrate is etched using a photoresist pattern deposited on the layer stack as a first mask. The photoresist pattern is in-situ cured using plasma. At least a portion of the photoresist pattern can be modified by curing. In one embodiment, silicon by-products are formed on the photoresist pattern from the plasma. In another embodiment, a carbon from the plasma is embedded into the photoresist pattern. In yet another embodiment, the plasma produces an ultraviolet light to cure the photoresist pattern. The cured photoresist pattern is slimmed. The layer stack is etched using the slimmed photoresist pattern as a second mask.
Abstract:
A layer stack over a substrate is etched using a photoresist pattern deposited on the layer stack as a first mask. The photoresist pattern is in-situ cured using plasma. At least a portion of the photoresist pattern can be modified by curing. In one embodiment, silicon by-products are formed on the photoresist pattern from the plasma. In another embodiment, a carbon from the plasma is embedded into the photoresist pattern. In yet another embodiment, the plasma produces an ultraviolet light to cure the photoresist pattern. The cured photoresist pattern is slimmed. The layer stack is etched using the slimmed photoresist pattern as a second mask.
Abstract:
Embodiments of the present disclosure generally provide a method and apparatus for forming features in a material layer utilizing EUV technologies. In one embodiment, a method of patterning a substrate includes disposing a patterned photoresist layer on a mask layer disposed on a substrate, wherein the patterned photoresist layer has openings with different widths defined in the patterned photoresist layer, forming a compensatory layer along sidewalls of the patterned photoresist layer to modify the widths of the openings and etching the mask layer through the openings with the modified width.
Abstract:
Systems and methods discussed herein are directed towards processing of substrates, including forming a plurality of features in a target layer on a substrate. The formation of the plurality of features includes a main etch operation that forms the plurality of features to a first depth in the target layer. The main etch operation is followed by a phase shift sync pulsing (PSSP) operation, and these two operations are repeated iteratively to form the features to a predetermined depth. The PSSP operation includes one or more cycles of RF source power and RF bias power, this cycle deposits a protective coating in and on the features and then etches a portion of the protective coating to expose portions of the feature.
Abstract:
In some embodiments, methods for forming a three dimensional NAND structure include providing to a process chamber a substrate having alternating nitride layers and oxide layers or alternating polycrystalline silicon consisting layers and oxide layers formed atop the substrate and a photoresist layer formed atop the alternating layers; etching the photoresist layer to expose at least a portion of the alternating layers; providing a process gas comprising sulfur hexafluoride and oxygen to the process chamber; providing RF power of about 4 kW to about 6 kW to a first inductive RF coil and a second inductive RF coil disposed proximate the process chamber to ignite the process gas to form a plasma, wherein a current flowing through the first inductive RF coil is out of phase with RF current flowing through the second inductive RF coil; and etching through a desired number of the alternating layers to form a feature.
Abstract:
A layer stack over a substrate is etched using a photoresist pattern deposited on the layer stack as a first mask. The photoresist pattern is in-situ cured using plasma. At least a portion of the photoresist pattern can be modified by curing. In one embodiment, silicon by-products are formed on the photoresist pattern from the plasma. In another embodiment, a carbon from the plasma is embedded into the photoresist pattern. In yet another embodiment, the plasma produces an ultraviolet light to cure the photoresist pattern. The cured photoresist pattern is slimmed. The layer stack is etched using the slimmed photoresist pattern as a second mask.