Abstract:
An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
Abstract:
An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
Abstract:
Systems and methods for improved chip device performance are discussed herein. An exemplary chip device for use in an integrated circuit comprises a bottom and a top opposite the bottom. The chip device comprises a through-chip device interconnect and a clearance region. The through-chip device interconnect is configured to provide an electrical connection between a ground plane trace on the bottom and a chip device path on the top of the chip device. The clearance region on the bottom of the chip device comprises an electrically conductive substance. The size and shape of the clearance region assist in impedance matching. The chip device path on the top of the chip device may further comprise at least one tuning stub. The size and shape of the at least one tuning stub also assist in impedance matching.
Abstract:
Various embodiments are directed toward systems and method for manufacturing low cost passive waveguide components. For example, various embodiments relate to low cost manufacturing of passive waveguide components, including without limitation, waveguide filters, waveguide diplexers, waveguide multiplexers, waveguide bends, waveguide transitions, waveguide spacers, and antenna adapters. Some embodiments comprise manufacturing a passive waveguide component by creating a non-conductive structure using a low cost fabrication technology, such as injection molding or three-dimensional (3D) printing, and then forming a conductive layer over the non-conductive structure such that the conductive layer creates an electrical feature of the passive waveguide component.
Abstract:
Various embodiments are directed toward systems and method for manufacturing low cost passive waveguide components. For example, various embodiments relate to low cost manufacturing of passive waveguide components, including without limitation, waveguide filters, waveguide diplexers, waveguide multiplexers, waveguide bends, waveguide transitions, waveguide spacers, and antenna adapters. Some embodiments comprise manufacturing a passive waveguide component by creating a non-conductive structure using a low cost fabrication technology, such as injection molding or three-dimensional (3D) printing, and then forming a conductive layer over the non-conductive structure such that the conductive layer creates an electrical feature of the passive waveguide component.
Abstract:
Various embodiments provide for waveguide assemblies which may be utilized in wireless communication systems. Various embodiments may allow for waveguide assemblies to be assembled using tools and methodologies that are simpler than the conventional alternatives. Some embodiments provide for a waveguide assembly that comprises a straight tubular portion configured to be shortened, using simple techniques and tools, in order to fit into a waveguide assembly. For instance, for some embodiments, the waveguide assembly may be configured such that the straight portion can be shortened, at a cross section of the portion, using a basic cutting tool, such a hacksaw. In some embodiments, the straight portion may be further configured such that regardless of whether the straight tubular portion is shortened, the waveguide assembly remains capable of coupling to flanges, which facilitate coupling the straight tubular portion to connectable assemblies, such as other waveguide assemblies, radio equipment, or antennas.
Abstract:
Systems and methods for improved chip device performance are discussed herein. An exemplary chip device for use in an integrated circuit comprises a bottom and a top opposite the bottom. The chip device comprises a through-chip device interconnect and a clearance region. The through-chip device interconnect is configured to provide an electrical connection between a ground plane trace on the bottom and a chip device path on the top of the chip device. The clearance region on the bottom of the chip device comprises an electrically conductive substance. The size and shape of the clearance region assist in impedance matching. The chip device path on the top of the chip device may further comprise at least one tuning stub. The size and shape of the at least one tuning stub also assist in impedance matching.
Abstract:
Various embodiments provide for systems and methods for increased linear output power of a transmitter. An exemplary wireless communications system for transmitting an input signal comprises a predistorter module, a GaN power amplifier, a coupler, and an antenna. The predistorter module is configured to detect existing distortion by comparing the input signal to a feedback signal and generate a correction signal. The predistorter may adaptively adjust its operation to minimize the existing distortion due to GaN power amplifier nonlinear characteristics. The result is that the GaN power amplifier may send a power signal of improved linearity to the antenna. The coupler is configured to sample the amplified signal from the GaN power amplifier to generate the feedback signal. The antenna is configured to transmit the amplified signal.
Abstract:
An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
Abstract:
Various embodiments provide for waveguide assemblies which may be utilized in wireless communication systems. Various embodiments may allow for waveguide assemblies to be assembled using tools and methodologies that are simpler than the conventional alternatives. Some embodiments provide for a waveguide assembly that comprises a straight tubular portion configured to be shortened, using simple techniques and tools, in order to fit into a waveguide assembly. For instance, for some embodiments, the waveguide assembly may be configured such that the straight portion can be shortened, at a cross section of the portion, using a basic cutting tool, such a hacksaw. In some embodiments, the straight portion may be further configured such that regardless of whether the straight tubular portion is shortened, the waveguide assembly remains capable of coupling to flanges, which facilitate coupling the straight tubular portion to connectable assemblies, such as other waveguide assemblies, radio equipment, or antennas.