Abstract:
Methods of capturing and labeling a species, include attracting magnetically attractable particles to a solid support by magnetic forces, which particles have an affinity for the species, contacting the particles on the support with a sample containing the species to capture the species onto the particles on the support, and binding the species captured on the particles directly or indirectly to a detectable label before and/or whilst the species is captured on the particles on the support. The label may be bound to the captured species via an immunological binding partner which binds selectively to the species and may be a fluorescent label, luminescent label, enzyme label, dye label, phosphorescent label, metal-chelating label, radio label, spin label, heavy metal label, nucleic acid or nucleic acid analog hybridization label, avid or avid-like label suitably bound to or incorporated in particles which also bear a binding agent such as an antibody causing the particles to bind to the captured species.
Abstract:
A bindable target such as a bacterial cell, virus, or molecule is captured from a liquid by contacting the liquid with magnetically attractable particles have an affinity for the target, and causing said particles to move repeatedly through said liquid to at least one solid support zone by attractive magnetic forces to capture the target onto said particles. The particles may be ferromagnetic, paramagnetic or superparamagnetic particles and may bear antibody, antibody binding fragments, a substance having an epitope capable of reacting in a specific manner with an antibody, an aptamer, a nucleic acid sequence or a nucleic acid analogue sequence, biotin, avidin or streptavidin. The particles may be moved back and forth in the liquid between separated solid support zones by attractive magnetic forces which attract the particles temporarily to different solid support zones in turn
Abstract:
A sample preparation device comprises:withdrawal means for withdrawing a sample from a liquid to be analysed; anda foam filter for filtering particulate material from the sample as the sample is withdrawn, the foam filter being mounted to the withdrawal means.
Abstract:
Particles are subjected to travelling wave field migration (TWFM) to migrate the particles over an array of microelectrodes. Altered particles are produced by treating original particles in such a way so as to alter their TWFM characteristics and the altered TWFM characteristics are employed for analysis and/or separation of the altered particles. The particles may be cells, bacteria, viruses, biomolecules or plastics microspheres. They may be altered by binding to a ligand such as a metal microparticle via a selective linking moiety such as an antibody/antigen or oligonucleic acid, or be physical or chemical treatments.
Abstract:
A method and apparatus for filtering microorganisms from a sample and culturing the microorganisms employs a membrane filter (3) in a filter holder (10) in which holder the membrane filter is supported on an absorbent support (26) which is maintained in an expansible compressed state against the membrane filter so that any expansion of the membrane filter when wetted by a sample does not cause bubbling of the membrane filter away from its support entrapping air bubbles and so preventing supply of nutrient from culture medium supplied to the support from reaching the microorganisms on the membrane filter.
Abstract:
A species such as a microorganism, e.g. Legionella, Giardia or Cryptosporidium, is captured by first attracting plastic coated magneticbeads or other magnetically attractable particles to a solid support such as stainless steel mesh, which particles have a selective affinity for the species, e.g. by virtue of an antibody coating, and contacting a sample containing the species with the particles on the solid support. The beads bearing the captured species may be released by reduction of the magnetic attraction of the support for the beads, e.g. by turning off an electromagnet used to magnetize the support.
Abstract:
An expansible, compressed foam is used a s a filter medium and captured particulates are released from the foam by expanding the foam to open its pores. Micro-organisms such as Cryptosporidium or Giardia cysts may be trapped and recovered at high eficiency in a small volume of wash liquid easing further analysis. A foam filter element comprises thirty discs (36) of retriculated foam compressed between end plates (28,30) to about one tenth of their original thickness.
Abstract:
Particles are subjected to travelling wave field migration (TWFM) to migrate the particles over an array of microelectrodes. Altered particles are produced by treating original particles in such a way so as to alter their TWFM characteristics and the altered TWFM characteristics are employed for analysis and/or separation of the altered particles. The particles may be cells, bacteria, viruses, biomolecules or plastics microspheres. They may be altered by binding to a ligand such as a metal microparticle via a selective linking moiety such as an antibody/antigen or oligonucleic acid, or be physical or chemical treatments.