摘要:
Methods for carrying out high temperature reactions such as biomass pyrolysis or gasification using solar energy. The biomass particles are rapidly heated in a solar thermal entrainment reactor. The residence time of the particles in the reactor can be 5 seconds or less. The biomass particles may be directly or indirectly heated depending on the reactor design. Metal oxide particles can be fed into the reactor concurrently with the biomass particles, allowing carbothermic reduction of the metal oxide particles by biomass pyrolysis products. The reduced metal oxide particles can be reacted with steam to produce hydrogen in a subsequent process step.
摘要:
Methods for carrying out high temperature reactions such as biomass pyrolysis or gasification using solar energy. The biomass particles are rapidly heated in a solar thermal entrainment reactor. The residence time of the particles in the reactor can be 5 seconds or less. The biomass particles may be directly or indirectly heated depending on the reactor design. Metal oxide particles can be fed into the reactor concurrently with the biomass particles, allowing carbothermic reduction of the metal oxide particles by biomass pyrolysis products. The reduced metal oxide particles can be reacted with steam to produce hydrogen in a subsequent process step.
摘要:
1-100 nm metal ferrite spinel coatings are provided on substrates, preferably by using an atomic layer deposition process. The coatings are able to store energy such as solar energy, and to release that stored energy, via a redox reaction. The coating is first thermally or chemically reduced. The reduced coating is then oxidized in a second step to release energy and/or hydrogen, carbon monoxide or other reduced species.
摘要:
1-100 nm metal ferrite spinel coatings are provided on substrates, preferably by using an atomic layer deposition process. The coatings are able to store energy such as solar energy, and to release that stored energy, via a redox reaction. The coating is first thermally or chemically reduced. The reduced coating is then oxidized in a second step to release energy and/or hydrogen, carbon monoxide or other reduced species.
摘要:
1-100 nm metal ferrite spinel coatings are provided on substrates, preferably by using an atomic layer deposition process. The coatings are able to store energy such as solar energy, and to release that stored energy, via a redox reaction. The coating is first thermally or chemically reduced. The reduced coating is then oxidized in a second step to release energy and/or hydrogen, carbon monoxide or other reduced species.
摘要:
1-100 nm metal ferrite spinel coatings are provided on substrates, preferably by using an atomic layer deposition process. The coatings are able to store energy such as solar energy, and to release that stored energy, via a redox reaction. The coating is first thermally or chemically reduced. The reduced coating is then oxidized in a second step to release energy and/or hydrogen, carbon monoxide or other reduced species.
摘要:
A reactor for conducting vapor phase deposition process is disclosed. The reactor includes a reactive precursor reservoir beneath a powder reservoir and separated from it by valve means. A reactive precursor is charged into the reactive precursor reservoir and a powder is charged into the powder reservoir. The pressures are adjusted so that the pressure in the reactive precursor reservoir is higher than that of the powder reservoir. The valve means is opened, and the vapor phase reactant fluidized the powder and coats its surface. The powder falls into the reactive precursor reservoir. The apparatus permits vapor phase deposition processes to be performed semi-continuously.
摘要:
A reactor for conducting vapor phase deposition process is disclosed. The reactor includes a reactive precursor reservoir beneath a powder reservoir and separated from it by valve means. A reactive precursor is charged into the reactive precursor reservoir and a powder is charged into the powder reservoir. The pressures are adjusted so that the pressure in the reactive precursor reservoir is higher than that of the powder reservoir. The valve means is opened, and the vapor phase reactant fluidized the powder and coats its surface. The powder falls into the reactive precursor reservoir. The apparatus permits vapor phase deposition processes to be performed semi-continuously.