Abstract:
An electronic device includes an enclosure formed of a plurality of layers cooperating to define an interior volume. The enclosure includes a first layer formed of a first material and defining a user input surface of the enclosure and a first portion of a side surface of the enclosure. The enclosure also includes a second layer, formed of a second material different from the first material, positioned below the first layer and defining a second portion of the side surface of the enclosure. The enclosure also includes a third layer, formed of a third material different from the first and second materials, positioned below the second layer and defining a bottom surface of the enclosure and a third portion of the side surface of the enclosure.
Abstract:
An electronic device includes an enclosure formed of a plurality of layers cooperating to define an interior volume. The enclosure includes a first layer formed of a first material and defining a user input surface of the enclosure and a first portion of a side surface of the enclosure. The enclosure also includes a second layer, formed of a second material different from the first material, positioned below the first layer and defining a second portion of the side surface of the enclosure. The enclosure also includes a third layer, formed of a third material different from the first and second materials, positioned below the second layer and defining a bottom surface of the enclosure and a third portion of the side surface of the enclosure.
Abstract:
Laminate components for electronic devices are disclosed. The electronic device may include a housing having a laminate structure. The laminate structure may include a first layer defining a front surface of the housing, a second layer defining a rear surface of the housing, and at least one intermediate layer positioned between the first layer and the second layer. The layers of the laminate may be configured to allow another component to be embedded in the housing, to provide an attachment feature, or to provide a reinforcing feature.
Abstract:
This application relates to a battery system for reducing spacing between components in an electronic device. The battery system includes a housing surrounding an electrode assembly and a connection module. The housing is rigid or semi-rigid and connected to a common ground. The battery system can be positioned in the electronic device to contact components without damaging the components. In some embodiments, the battery system can be used as a structural element in the electronic component.
Abstract:
An electronic device includes an enclosure formed of a plurality of layers cooperating to define an interior volume. The enclosure includes a first layer formed of a first material and defining a user input surface of the enclosure and a first portion of a side surface of the enclosure. The enclosure also includes a second layer, formed of a second material different from the first material, positioned below the first layer and defining a second portion of the side surface of the enclosure. The enclosure also includes a third layer, formed of a third material different from the first and second materials, positioned below the second layer and defining a bottom surface of the enclosure and a third portion of the side surface of the enclosure.
Abstract:
An electronic device includes an enclosure formed of a plurality of layers cooperating to define an interior volume. The enclosure includes a first layer formed of a first material and defining a user input surface of the enclosure and a first portion of a side surface of the enclosure. The enclosure also includes a second layer, formed of a second material different from the first material, positioned below the first layer and defining a second portion of the side surface of the enclosure. The enclosure also includes a third layer, formed of a third material different from the first and second materials, positioned below the second layer and defining a bottom surface of the enclosure and a third portion of the side surface of the enclosure.
Abstract:
This application relates to methods for applying automated precision machining operations to an oversized workpiece with a compact computer numerical control (CNC) machining apparatus. By shifting an oversized workpiece through a working area of the CNC machining apparatus, the CNC machining apparatus can apply machining operations to any portion of the workpiece in an automated manner. To achieve precision results, a position of the workpiece is tracked as the workpiece is shifted through the working area. In some embodiments, a probe can be utilized to track the shifting of the workpiece by determining a location of a machined feature after a particular shift has been completed. In this way, a position of the workpiece can be tracked without having to rely upon tolerances inherent to a workpiece manipulator.
Abstract:
An aesthetically pleasing small form factor desktop computer is described. The small form factor desktop computer can be formed of a single piece seamless housing that in the described embodiment is machined from a single billet of aluminum. The single piece seamless housing includes an aesthetically pleasing foot support having at least a portion formed of RF transparent material that provides easy user access to selected internal components as well as offers electromagnetic (EM) shielding. This simplicity of design can accrue many advantages to the small form factor desktop computer besides those related to aesthetic look and feel. Fewer components and less time and effort can be required for assembly of the small form factor desktop computer and the absence of seams in the single piece housing can provide good protection against environmental contamination of internal components as well as EM shielding.
Abstract:
An apparatus configured to convert a rotary machine to a non-rotary machine is provided. The apparatus may include a tool body that engages a rotary head of a CNC mill and a rotation restraint member that is fixed at a stationary position relative to a rotational axis of the rotary head. An arm of the tool body may engage the rotation restraint member to prevent rotation of the tool body. A cutting tool may be coupled to the tool body such that rotation thereof is also fixed. The arm of the tool body may include an elongated aperture that allows for slight pivoting of the tool body and the cutting tool to facilitate chip removal and cutting in opposing directions. Related methods are also provided.
Abstract:
A structural member having an internal geometry capable of receive an object and substantially seamless outer surfaces, and that is obtainable by a method that includes providing several small plates, welding together the small plates, removing the weld residue, and polishing an outer surface of the structural member to achieve a certain desired visual effect. A middle plate, or several middle plates, may be positioned between a first plate and a second plate. The middle portion occupied by the middle plates includes an opening, cavity, and/or channel. The opening, cavity, and/or channel may receive a cable from an electronic device, or house a component. The plates and the opening, cavity, and/or channels between the plates, generally have a small form factor, and accordingly, require an assembly process to create the opening, cavity, and/or channels rather than using traditional drilling and/or milling techniques.