Abstract:
A microfluidic device may include a substrate having a cavity therein, and a bendable membrane within the cavity and having a plurality of spaced apart valve passageways therein. The bendable membrane may be bendable between a first position with the valve passageways being opened, and a second position with the valve passageways being closed. The microfluidic device may further include an actuator configured to bend the bendable membrane between the first and second positions.
Abstract:
A testing device uses a selectively deformable substrate to capture and retain spherical beads for genetic experimentation. A method of fabricating the device is described in which a silicon substrate can be coated with a photosensitive, bio-compatible polymer for photolithographic patterning using a single mask exposure. The polymer is patterned with a matrix of wells, each well capable of expansion to accept placement of a bead in the well, and contraction to secure the bead in the well. The polymer can exhibit piezoelectric properties that cause it to respond mechanically to a selected electrical excitation.
Abstract:
A testing device uses a selectively deformable substrate to capture and retain spherical beads for genetic experimentation. A method of fabricating the device is described in which a silicon substrate can be coated with a photosensitive, bio-compatible polymer for photolithographic patterning using a single mask exposure. The polymer is patterned with a matrix of wells, each well capable of expansion to accept placement of a bead in the well, and contraction to secure the bead in the well. The polymer can exhibit piezoelectric properties that cause it to respond mechanically to a selected electrical excitation.
Abstract:
A MEMS multiaxial inertial sensor of angular and linear displacements, velocities or accelerations has four comb drive capacitive sensing elements (18) integrated on a planar substrate (12), each having an output responsive to displacement along a Z axis, and responsive to a displacement along X or Y axes. The sensing elements are located at different parts of the substrate on both sides of the X axis and the Y axis, the outputs being suitable for subsequently deriving linear displacements along any of the X, Y or Z axes and angular displacements about any of the X, Y or Z axes. Fewer sensing elements are needed to sense in multiple directions, making the device more cost effective or smaller. Linear or angular movement is determined from combinations of the sensor signals.
Abstract:
A MEMS multiaxial inertial sensor of angular and linear displacements, velocities, or accelerations has four comb drive capacitive sensing elements integrated on a planar substrate, each sensing element having an output responsive to displacement along a Z axis, and responsive to a displacement along X or Y axes. The sensing elements are located at different parts of the substrate on both sides of the X axis and the Y axis, the outputs being suitable for subsequently deriving linear and angular displacements about any of the X, Y or Z axes. Linear or angular movement is determined from combinations of the sensor signals.