Abstract:
In a polymeric microfluidic valve, an adhesion control surface with discrete micro- or nano-scale structured surfaces are separated by fluid filled voids at an interface between an elastomeric membrane seals against a substrate layer. The structured surfaces reduce adhesion between the membrane layer and the substrate layer and prevent permanent bonding, while at the same time providing a good balance of adhesion at the valve seat to provide a sealing engagement. Microstructured adhesion control surfaces on and around valve bodies permit opening the valve, by reducing contact surface area.
Abstract:
A microfluidic device may include a substrate having a cavity therein, and a bendable membrane within the cavity and having a plurality of spaced apart valve passageways therein. The bendable membrane may be bendable between a first position with the valve passageways being opened, and a second position with the valve passageways being closed. The microfluidic device may further include an actuator configured to bend the bendable membrane between the first and second positions.
Abstract:
The present invention relates to a porous adaptive membrane structure that has movable membranes. The structure can be made to change its gas, liquid or particulate permeability in response to surrounding environmental conditions. The application of this invention is includes protective apparel that is comfortable to wear wherein the level of protection provided is based on conditions in the environment. Hence, the protective apparel is highly breathable and comfortable in a non-hazardous environment but impermeable or only semipermeable in a hazardous environment.
Abstract:
Flow regulators for implantable drug delivery devices (100) and drug delivery devices produced therewith. Implantable drug delivery devices (100) employing diffusion, osmosis, electrodiffusion, electroosmosis, or a combination of one or more of these for driving one or more drugs therefrom are provided with cover members (126, 128) for varying at least one of an effective cross-sectional area and transport characteristics through which fluids diffuse or osmose. The cover members may be remotely actuated from a location outside of an implantation site after implantation of a device.
Abstract:
The present invention provides a hybrid material and a method for forming a hybrid material comprising actuator made from a stimuli responsive polymer mounted in a porous framework. The present invention also provides devices employing the actuator of the present invention.
Abstract:
The present invention provides a hybrid material and a method for forming a hybrid material comprising actuator made from a stimuli responsive polymer mounted in a porous framework. The present invention also provides devices employing the actuator of the present invention.
Abstract:
A microfluidic device for concentrating particles in a concentrating solution. A sample and a concentrating fluid flow laminarly with a microfluidic channel wherein the concentrating fluid is formulated such that it extracts fluid from the sample and thus concentrates the particles in the sample.
Abstract:
Microfluidic devices and methods for metering discrete plugs of fluid are provided. The microfluidic devices include a trunk channel and a branch channel having an impedance region. A fluid is supplied to the trunk channel and fills the branch channel to the impedance region. The fluid is then flushed from the trunk channel leaving the branch channel filled. Because the branch channel has a volume, a discrete plug of the fluid having a volume substantially equal to that of the branch channel is formed.
Abstract:
A device for promoting sedimentation within microfluidic channels which uses gravity to separate particles from fluid. Particles such as blood cells or beads are separated from a carrier fluid using gravity combined with various devices such as membranes and sonic energy in different embodiments.
Abstract:
A microcytometer which combines lysing and cytometry into a unified system that achieves blood lysis and white blood cell count in a single device. The device focuses the white cells into a thin ribbon which is then focused into a single stream for analysis.