Abstract:
An array substrate, a manufacturing method thereof, a display device, a thin-film transistor (TFT) and a manufacturing method thereof are disclosed. The method for manufacturing the TFT comprises: forming a pattern of an active layer and a gate insulating layer provided with a metal film on a base substrate patterning the metal film by one patterning process, and forming patterns of a gate electrode, a source electrode, a drain electrode, a gate line and a data line; forming a passivation layer on the base substrate; patterning the passivation layer by one patterning process, and forming a source contact hole, a drain contact hole and a bridge structure contact hole; and forming a transparent conductive film on the base substrate, and removing partial transparent conductive film to form a source contact portion, a drain contact portion, a pixel electrode and a bridge structure.
Abstract:
Preparation methods for a thin-film layer pattern, thin-film transistor and array substrate. The preparation method for a thin-film layer pattern includes: providing a mask plate, the mask plate including a mask plate body and a hollowed portion arranged on same; placing the mask plate onto a substrate, and allowing a projection of the hollowed portion on the substrate to be overlapped with a projection of a thin-film layer pattern to be formed on the substrate; forming a thin film on the substrate on which the mask plate (10) is placed, wherein a first thin-film portion formed at the hollowed portion is disconnected from a second thin-film portion formed on the mask plate body; and stripping the mask plate, and reserving the first thin-film portion to form the thin-film layer pattern.
Abstract:
A display substrate and a manufacture method thereof, a display device are disclosed. The display substrate includes a base substrate, a thin film transistor on the base substrate and a light shielding layer on the base substrate. The light shielding layer includes a first light shielding layer and a second light shielding layer that are stacked; an orthographic projection of an active layer of the thin film transistor on the base substrate is within an orthogonal projection of the light shielding layer on the base substrate, and the second light shielding layer includes nanoparticles capable of absorbing light in a specific wavelength range.
Abstract:
A thin-film transistor (TFT) and a manufacturing method thereof, an array substrate and a display device are provided. The TFT includes: a base substrate; a gate electrode and a gate insulating layer, disposed on the base substrate; and an active layer, wherein the gate insulating layer is disposed between the active layer and the gate electrode; the active layer includes a channel region and a doped region disposed on at least one side of the channel region; and the gate insulating layer is provided with a protrusion which is disposed between the doped region and the gate electrode.
Abstract:
A manufacturing method of an array substrate, an array substrate and a display device are provided. The manufacturing method of the array substrate comprises: forming a first conductive thin film (100) on a base substrate (1); and patterning the first conductive thin film (100), to form a pattern of a cathode (11) on a first region (11) of the base substrate (1), and form a pattern of a gate electrode (4) on a second region (12) of the base substrate (1). Complexity and process time of a fabrication process of an array substrate can be reduced, a fabrication process of an organic electroluminescent panel can be simplified, and production cost can be reduced, by forming a cathode layer of a light-emitting diode and a gate electrode layer of a thin film transistor in different regions of the base substrate at the same time by one patterning process.
Abstract:
A thin-film transistor (TFT), a manufacturing method thereof, display substrate and a display device are disclosed. The TFT includes: an active layer, gate insulating layer, gate electrode, an interlayer dielectric layer, source electrode and a drain electrode disposed on a base substrate in sequence. The source electrode and drain electrode are respectively connected with the active layer via a through hole exposing the active layer; the gate insulating layer at least includes a silicon oxide layer and a silicon nitride layer in a two-layer structure; the interlayer dielectric layer at least includes silicon oxide layers and silicon nitride layers in a four-layer structure; the silicon oxide layers and silicon nitride layers of the gate insulating layer and the interlayer dielectric layer are alternately arranged; and the dimension of one side of the through hole away from the base substrate is greater than that of one side close to the base substrate.