Abstract:
The present disclosure generally relates to modified microorganisms comprising an optimized system for oligosaccharide utilization comprising one or more polynucleotides coding for one or more energy independent oligosaccharide transporters for transporting an oligosaccharide into the microorganism, one or more polynucleotides coding for enzymes that catalyze the conversion of the oligosaccharide into at least one phosphorylated saccharide, and one or more polynucleotides coding for enzymes that catalyze the conversion of the phosphorylated saccharide into an isomer of the phosphorylated saccharide that is utilized in one or more enzymatic pathways in the microorganism for the production of an organic molecule such as acetic acid, acrylic acid, 3-hydroxypropionic acid, lactic acid, etc. The present disclosure also generally relates to methods of using the optimized system for oligosaccharide utilization.
Abstract:
The present disclosure generally relates to microorganisms (e.g., non-naturally occurring microorganisms) that comprise one or more polynucleotides coding for enzymes in a pathway that catalyze a conversion of a carbon source (e.g., a fermentable carbon source) to terpene and a co-product such as succinate, 1,3-butanediol, or crotonyl alcohol and the use of such microorganisms for the production of terpene and a co-product such as succinate, 1,3-butanediol, or crotonyl alcohol.
Abstract:
The present disclosure provides a non-naturally occurring microorganism comprising: one or more polynucleotides encoding one or more enzymes in a pathway that produces acetyl-CoA; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of crotonyl alcohol, 5-hydroxy-3-ketovaleryl-CoA, 3-ketopent-4-enoyl-CoA, or 3,5-ketovaleryl-CoA to butadiene; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of dihydroxyacetone-phosphate to 1-propanol and/or 1,2-propanediol, wherein the microorganism has reduced levels of pyruvate decarboxylase enzymatic activity (e.g., the microorganism comprises a disruption of one or more enzymes that decarboxylate pyruvate and/or a disruption of one or more transcription factors of one or more enzymes that decarboxylate pyruvate), and wherein the microorganism is capable of growing on a C6 sugar as a sole carbon source under anaerobic conditions. Also provided are methods of using the disclosed non-naturally occurring microorganisms in methods for the coproduction of butadiene and 1-propanol and/or 1,2-propanediol.
Abstract:
The disclosure provides engineered enzymes that are capable of mediating the conversion of acetoacetyl-CoA to acetoacetate that do not react with the same order of magnitude with acetyl-CoA as they do with acetoacetyl-CoA (e.g., the engineered enzymes have a specific acetoacetyl-CoA hydrolase activity at least 10× higher than its acetyl-CoA hydrolase activity). Additionally, the disclosure provides modified microorganisms that comprise the engineered enzymes disclosed herein and methods of using same.
Abstract:
The present disclosure generally relates to microorganisms that comprise one or more polynucleotides coding for enzymes in a pathway that catalyzes a conversion of a fermentable carbon source to butadiene and/or one or more polynucleotides coding for enzymes in a pathway that catalyzes a conversion of a fermentable carbon source to 1-propanol and/or 1,2-propanadiol. Also provided are methods of using the microorganisms to produce butadiene and co-products such 1-propanol and/or 1,2-propanediol.
Abstract:
The present disclosure generally relates to methods of using microorganisms that comprise one or more polynucleotides coding for enzymes in one or more pathways that catalyze a conversion of a fermentable carbon source to butadiene and products and processes derived therefrom.
Abstract:
The disclosure provides engineered enzymes that are capable of mediating the conversion of acetoacetyl-CoA to acetoacetate that do not react with the same order of magnitude with acetyl-CoA as they do with acetoacetyl-CoA (e.g., the engineered enzymes have a specific acetoacetyl-CoA hydrolase activity at least 10x higher than its acetyl-CoA hydrolase activity). Additionally, the disclosure provides modified microorganisms that comprise the engineered enzymes disclosed herein and methods of using same.
Abstract:
The present disclosure generally relates to microorganisms that comprise one or more polynucleotides coding for enzymes in one or more pathways that catalyze a conversion of a fermentable carbon source to butadiene. Also provided are methods of using the microorganisms in industrial processes including, for use in the production of butadiene and products derived therefrom.
Abstract:
The present disclosure generally relates to modified microorganisms comprising an optimized system for oligosaccharide utilization comprising one or more polynucleotides coding for one or more energy independent oligosaccharide transporters for transporting an oligosaccharide into the microorganism, one or more polynucleotides coding for enzymes that catalyze the conversion of the oligosaccharide into at least one phosphorylated saccharide, and one or more polynucleotides coding for enzymes that catalyze the conversion of the phosphorylated saccharide into an isomer of the phosphorylated saccharide that is utilized in one or more enzymatic pathways in the microorganism for the production of an organic molecule such as acetic acid, acrylic acid, 3-hydroxypropionic acid, lactic acid, etc. The present disclosure also generally relates to methods of using the optimized system for oligosaccharide utilization.
Abstract:
The disclosure provides engineered enzymes that are capable of mediating the conversion of acetoacetyl-CoA to acetoacetate that do not react with the same order of magnitude with acetyl-CoA as they do with acetoacetyl-CoA (e.g., the engineered enzymes have a specific acetoacetyl-CoA hydrolase activity at least 10× higher than its acetyl-CoA hydrolase activity). Additionally, the disclosure provides modified microorganisms that comprise the engineered enzymes disclosed herein and methods of using same.