Abstract:
The present disclosure provides a non-naturally occurring microorganism comprising: one or more polynucleotides encoding one or more enzymes in a pathway that produces acetyl-CoA; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of crotonyl alcohol, 5-hydroxy-3-ketovaleryl-CoA, 3-ketopent-4-enoyl-CoA, or 3,5-ketovaleryl-CoA to butadiene; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of dihydroxyacetone-phosphate to 1-propanol and/or 1,2-propanediol, wherein the microorganism has reduced levels of pyruvate decarboxylase enzymatic activity (e.g., the microorganism comprises a disruption of one or more enzymes that decarboxylate pyruvate and/or a disruption of one or more transcription factors of one or more enzymes that decarboxylate pyruvate), and wherein the microorganism is capable of growing on a C6 sugar as a sole carbon source under anaerobic conditions. Also provided are methods of using the disclosed non-naturally occurring microorganisms in methods for the coproduction of butadiene and 1-propanol and/or 1,2-propanediol.
Abstract:
The present disclosure generally relates to a compound of dialkyl ester of 2,4-furandicarboxylic acid, a method of preparing the compound, a polymer composition comprising a polymer and the compound, a method of preparing the polymer composition, a polymer product comprising the polymer composition and a method of using the compound as a plasticizer in the polymer product. The dialkyl ester of 2,4-furandicarboxylic acid of the present disclosure has greater plasticizing efficiency in a polymer composition that that of the standard phthalate and terephthalate-based plasticizers. The polymer product plasticized with the dialkyl ester of 2,4-furandicarboxylic acid may have improved flexibility, durability, processability and safety as compared to the same polymer product plasticized with conventional phthalate and terephthalate-based plasticizers.
Abstract:
The present disclosure relates to biological processes and systems for the production of isopropanol and/or acetone utilizing modified alcohol dehydrogenases that exhibit increased activity with NADH as a cofactor. The disclosure further relates to polynucleotides and polypeptides of the modified alcohol dehydrogenases, and host cells containing the polynucleotides and expressing the polypeptides.
Abstract:
The present disclosure provides a copolyester including a dicarboxylic acid component A comprising a terephthalic acid residue or ester-forming derivative thereof, or a mixture thereof, and a 2,4-furandicarboxylic acid residue or ester-forming derivative thereof, or a mixture thereof, and a diol component B comprising an alkanediol residue having from 2 to 22 carbon atoms, wherein the dicarboxylic acid component A has a total molar content, and wherein the 2,4-furandicarboxylic acid residue or ester-forming derivative thereof, is present in an amount of from 0.1 to 10 mol %, with respect to the total molar content of the dicarboxylic acid component A. Inventive copolyesters have a slower crystallization rate, a higher gas barrier to CO2 and O2 and a higher ratio of 14C to 12C as measured by ASTM D6866 when compared to a comparable copolyester comprising isophthalic acid instead of 2,4-furandicarboxylic acid.
Abstract:
The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.
Abstract:
The disclosure provides engineered enzymes that are capable of mediating the conversion of acetoacetyl-CoA to acetoacetate that do not react with the same order of magnitude with acetyl-CoA as they do with acetoacetyl-CoA (e.g., the engineered enzymes have a specific acetoacetyl-CoA hydrolase activity at least 10× higher than its acetyl-CoA hydrolase activity). Additionally, the disclosure provides modified microorganisms that comprise the engineered enzymes disclosed herein and methods of using same.
Abstract:
The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.
Abstract:
The present disclosure generally relates to methods of using microorganisms that comprise one or more polynucleotides coding for enzymes in one or more pathways that catalyze a conversion of a fermentable carbon source to butadiene and products and processes derived therefrom.
Abstract:
The disclosure provides engineered enzymes that are capable of mediating the conversion of acetoacetyl-CoA to acetoacetate that do not react with the same order of magnitude with acetyl-CoA as they do with acetoacetyl-CoA (e.g., the engineered enzymes have a specific acetoacetyl-CoA hydrolase activity at least 10x higher than its acetyl-CoA hydrolase activity). Additionally, the disclosure provides modified microorganisms that comprise the engineered enzymes disclosed herein and methods of using same.
Abstract:
The present disclosure generally relates to microorganisms that comprise one or more polynucleotides coding for enzymes in one or more pathways that catalyze a conversion of a fermentable carbon source to butadiene. Also provided are methods of using the microorganisms in industrial processes including, for use in the production of butadiene and products derived therefrom.