Abstract:
A power transmission system for a vehicle and a vehicle including the same are provided. The power transmission system includes an engine unit configured to generate power, a transmission unit adapted to selectively be coupled with the engine unit, and configured to transmit the power generated by the engine unit, a first motor generator coupled with the transmission unit, an output unit configured to transmit the power output by the transmission unit to at least one of front and rear wheels of the vehicle, and a second motor generator configured to drive the at least one of the front and rear wheels.
Abstract:
A power transmission system for a vehicle and a vehicle including the same are provided. The power transmission system includes: an engine unit configured to generate power; a transmission unit adapted to selectively couple with the engine unit, and configured to transmit the power generated by the engine unit; a first motor generator coupled with the transmission unit; an output unit configured to transmit the power output by the transmission unit to at least one of front and rear wheels of the vehicle; a power switching device adapted to enable or interrupt a power transmitting between the transmission unit and the output unit; and a second motor generator configured to drive the at least one of the front and rear wheels.
Abstract:
An active safety control system and method for a vehicle include: a plurality of motors arranged on a plurality of wheels; a plurality of brakes arranged on the plurality of wheels; a hydraulic braking device; a pedal detection device, used for detecting pedal signals of the vehicle; a motor state detection device, used for detecting the states of the plurality of motors; a plurality of wheel speed detection devices, arranged on the plurality of wheels, used for detecting speeds of the wheels and generating wheel speed detection signals; a power battery, connected with the plurality of motors respectively; and a control device, used for obtaining braking torques according to the pedal signals and the wheel speed detection signals, determining a corresponding braking mode according to the states of motors, and controlling the brakes, the motors and the hydraulic braking device according to the braking mode and the braking torques.
Abstract:
The present disclosure discloses a shifting control method for a hybrid vehicle. The shifting control method includes: detecting operating parameters of the hybrid vehicle, where the operating parameters of the hybrid vehicle includes vehicle speed, vehicle acceleration as reflected from an accelerator-pedal signal and a current gear of the hybrid vehicle; determining a work mode of the hybrid vehicle; performing speed adjustment and shifting control to the first motor-generator according to a work mode and the operating parameters of the hybrid vehicle to implement shifting control of the hybrid vehicle, where the work mode includes an electric-vehicle mode and a hybrid-electric-vehicle mode. The method considers performing speed adjustment and shifting control under various working conditions. This improves smoothness and comfort of the vehicle and enlarges the use scope. The present disclosure further discloses a power transmission system of a hybrid vehicle and a hybrid vehicle.
Abstract:
A power transmission system for a vehicle is provided. The system comprises an engine, a plurality of input shafts, at least one of the input shafts being configured to selectively engage with the engine, each of the input shafts being provided with a shift driving gear thereon, a plurality of output shafts, each of the output shafts being provided with a shift driven gear configured to mesh with a corresponding shift driving gear, a motor power shaft configured to rotate together with one of the input shafts, and a first motor generator configured to rotate together with the motor power shaft. When the motor power shaft rotates together with the one of the input shafts, the first motor generator uses at least a part of power output by the engine to generate electric power when the vehicle is parking or running. A vehicle including the power transmission system is also provided.
Abstract:
A power transmission system for a vehicle and a vehicle including the same are provided. The power transmission system includes an engine unit configured to generate power, a transmission unit adapted to selectively coupled with the engine unit, and configured to transmit the power generated by the engine unit, a first motor generator coupled with the transmission unit, an output unit configured to transmit the power output by the transmission unit to at least one of front and rear wheels of the vehicle, a power switching device adapted to enable or interrupt a power transmitting between the transmission unit and the output unit, and a second motor generator configured to drive the at least one of the front and rear wheels.
Abstract:
A locking apparatus, a powertrain, a power transmission system, and a vehicle, the locking system (200) comprising: a first flange (201a) and a second flange (201b); and first and second flange locking structures (Q1, Q2), the first and second flange locking structures (Q1, Q2) both being used for selectively locking the first flange (201a) and the second flange (201b) in order to make the second flange (201b) rotate synchronously with the first flange (201a), or in order to make the first flange (201a) rotate synchronously with the second flange (201b); the first and second flange locking structures (Q1, Q2) both comprise: a synchronising ring (202), the synchronising ring (202) being constantly connected to the corresponding flange in order to rotate synchronously with the corresponding flange, and the synchronising ring (202) being able to slide relative to the corresponding flange; and a drive assembly (203), the drive assembly (203) being capable of selectively pushing the synchronising ring to slide along the axial direction of the corresponding flange from an unlocked position to a locked position; when a synchronising ring (202) is positioned in the locked position, the two synchronising rings are connected, such that the other flange rotates synchronously with the flange corresponding to said synchronising ring. The present locking apparatus can implement a bidirectional locking function, and has a simple structure.
Abstract:
The present disclosure discloses an electric vehicle, an active safety control system of an electric vehicle, and a control method of the active safety control system of an electric vehicle. The electric vehicle includes: multiple wheels, multiple motors, a wheel speed detection module, a steering wheel rotation angle sensor, a yaw rate sensor, and a battery pack. The active safety control system includes: an acquisition module, acquiring the wheel speed signal, the direction information, the yaw information, status information of the battery pack, and status information of the multiple motors; a status determining module, determining status of the electric vehicle; and a control module, generating a control instruction and delivering the control instruction to at least one motor.
Abstract:
A transmission unit includes: input shafts; output shafts configured to transmit with a corresponding input shaft via gears; a reverse output gear fitted over one output shaft; a reverse synchronizer; a reverse shaft configured to rotate together with a input shaft and a reverse output gear; a motor power shaft; a first and a second motor gears fitted over the motor power shaft; the second motor gear configured to rotate together with a shift driven gear; and a motor synchronizer. A power transmission system including the transmission unit and a vehicle including the power transmission system are also provided.
Abstract:
The present disclosure discloses a shifting control method for a hybrid vehicle. The shifting control method includes: detecting operating parameters of the hybrid vehicle, where the operating parameters of the hybrid vehicle includes vehicle speed, vehicle acceleration as reflected from an accelerator-pedal signal and a current gear of the hybrid vehicle; determining a work mode of the hybrid vehicle; performing speed adjustment and shifting control to the first motor-generator according to a work mode and the operating parameters of the hybrid vehicle to implement shifting control of the hybrid vehicle, where the work mode includes an electric-vehicle mode and a hybrid-electric-vehicle mode. The method considers performing speed adjustment and shifting control under various working conditions. This improves smoothness and comfort of the vehicle and enlarges the use scope. The present disclosure further discloses a power transmission system of a hybrid vehicle and a hybrid vehicle.