Abstract:
A mounting structure for an in-vehicle power battery may be provided. The mounting structure may comprise an upper cover (3), a suspension tray (1) and a bracket device (2) for supporting at least a part of a peripheral bottom portion of the suspension tray (1). The suspension tray (1) may be hermetically connected with the upper cover (3), forming a sealed space for receiving the power battery. The bracket device (2) may be detachably fixed to a bottom surface of the body floor. Further, a vehicle (100) comprising the mounting structure described above may also be provided.
Abstract:
A hybrid power-driven system and a vehicle are provided. The hybrid power-driven system includes an engine, a transmission, and a motor power apparatus. The transmission includes a transmission mechanism and a main reducer. The motor power apparatus includes a motor and a power distribution mechanism. The power distribution mechanism includes a motor power distribution shaft, a mode selection apparatus, a first transmission apparatus, and a second transmission apparatus. The motor power distribution shaft is disposed independently from the transmission mechanism, and the motor power distribution shaft is disposed independently from the motor. A motor driven gear configured to receive power of the motor is disposed on the motor power distribution shaft.
Abstract:
The present disclosure discloses a power-driven system and a vehicle. The power-driven system includes: a power coupling device, where the power coupling device includes a first sun gear, a first planet carrier, a first ring gear, a second sun gear, a second planet carrier, a second ring gear, and a power transmission part; a power source; a first motor generator and a second motor generator; and a first braking device directly or indirectly braking the power transmission part. The power transmission part is coaxially linked to the first sun gear and the second sun gear. The power source is configured to selectively connect to the power transmission part. The first motor generator is linked to the first ring gear, and the second motor generator is linked to the second ring gear.
Abstract:
An auxiliary steering system (100) and method for an electric vehicle and the electric vehicle are disclosed. The system includes a detection component (6A) including a first electric motor (4) and a detection controller (6) configured to determine whether a steering assist device (2) is normal, to continue to determine whether the steering assist device (2) is normal if yes, and to control a drive rack (5A) of the first electric motor (4) to drive wheels (17) of the electric vehicle to return and to output a steering failure signal, a steering wheel torque signal and a direction signal if no; an electric motor controller (8); a second electric motor (14); and a vehicle controller (7). The electric motor controller (8) is further configured to control the second electric motor (14) to increase a drive torque for an outer front wheel (17), to brake an inner rear wheel (17), and to stop driving an inner front wheel (17) and an outer rear wheel (17).
Abstract:
The present disclosure relates to the technical field of vehicles, and provides a vehicle and an energy conversion device and a control method therefor. The energy conversion device includes a motor controller, a bus capacitor, a first switch module, a motor, and a second switch module. By controlling the first switch module and the second switch module to be turned on/off, a motor driving circuit can be formed by a battery pack, the first switch module, the bus capacitor, the motor controller, and the motor, and a charging and discharging circuit can be formed by the battery pack, the second switch module, the motor, the motor controller, and the bus capacitor.
Abstract:
In a power battery heating method for a vehicle, when a current temperature value of a power battery is lower than a preset temperature value, and a heating condition of the power battery meets a preset condition, a three-phase inverter is controlled to cause a three-phase alternating current motor to generate heat according to heating energy, to heat a coolant flowing through the power battery, a preset quadrature-axis current that causes a torque value outputted by the motor to be an appropriate value is obtained, and a corresponding preset direct-axis current is obtained according to heating power of the power battery, so as to control, according to the preset direct-axis current and the preset quadrature-axis current, the three-phase inverter to adjust a phase current of the three-phase alternating current motor in the heating process, where a direction of the preset direct-axis current changes periodically in the heating process.
Abstract:
The present disclosure provides a power-drive system for a vehicle and a vehicle. The power-drive system comprises: an engine; a plurality of input shafts; a plurality of output shafts, the plurality of output shafts linking with a differential of the vehicle; a first clutch device, arranged between the engine and the plurality of input shafts, so that the engine selectively engages with at least one of the plurality of input shafts; a first motor generator, configured to link with the differential of the vehicle; and a second motor generator, wherein the second motor generator and the engine are located on an input side of the first clutch device, the plurality of input shafts is located on an output side of the first clutch device, and the second motor generator is configured to carry out stationary power generation using at least part of power of the engine when the vehicle is parked.
Abstract:
The present specification discloses a differential mechanism and a vehicle. The differential mechanism includes a shell. A left half axle gear, a right half axle gear, a planet wheel and a planet wheel axle are disposed in the shell. The planet wheel is rotatably mounted on the planet wheel axle and meshes with the left half axle gear and the right half axle gear. A power engagement device includes a first engagement portion and a second engagement portion. The first engagement portion is connected with the left half axle gear or the right half axle gear, and the second engagement portion rotates synchronously with and moves axially relative to the shell. An engagement portion drive device includes a drive pin and a drive portion. The drive portion is configured to drive the drive pin to drive the second engagement portion close to the first engagement portion along an axial direction.
Abstract:
A power-driven system includes: a differential; a power output shaft configured to link to a power input end of the differential; multiple input shafts; and a first motor generator. The differential includes a first planet carrier, a second planet carrier, a first planet gear, a second planet gear, a first ring gear, and a second ring gear. The first planet gear and the second planet gear are respectively disposed on the first planet carrier and the second planet carrier and respectively meshed with the first ring gear and the second ring gear. One input shaft of the multiple input shafts is configured to selectively link to the power output shaft, and another input shaft of the multiple input shafts is configured to link to the power output shaft. The first motor generator is configured to link to the one input shaft of the multiple input shafts.
Abstract:
A method and a system for controlling a vehicle (100) with four-wheel drive are provided. The method includes: acquiring a vehicle condition information parameter by a vehicle condition information collector; obtaining a radius of turning circle to be reduced from a driver by a turning circle receiver (40); obtaining a controlling yaw moment corresponding to the radius of turning circle to be reduced according to the vehicle condition information parameter and the radius of turning circle to be reduced by a turning circle controller (11); and distributing the controlling yaw moment to four wheels (90) of the vehicle (100) according to an intensity level of the radius of turning circle to be reduced and the vehicle condition information parameter by the turning circle controller (11), such that the vehicle (100) turns circle.