Abstract:
An ultra-large-scale integrated (ULSI) circuit includes MOSFETs which have different threshold voltages and yet have the same channel characteristics. The MOSFETs include gate structures or gate stacks with a silicon and germanium material provided over a seed layer. The seed layer can be a 20-40 Å polysilicon layer. An amorphous silicon layer is provided over the silicon and germanium material, and a cap layer is provided over the amorphous silicon layer. The polysilicon material is implanted with lower concentrations of germanium, where lower threshold voltage MOSFETs are required. Over a range of 0-60% concentration of germanium, the threshold voltage can be varied by roughly 240 mV.
Abstract:
A novel method is provided for in situ monitoring of a film being deposited on a wafer for manufacturing a semiconductor device. The method involves producing an incident beam of radiation directed during a deposition process to a film being deposited on a wafer in a deposition reactor. The Raman scattered radiation resulted from interaction of the incident beam with molecules of the deposited film is detected to produce a Raman spectrum of the deposited film.
Abstract:
Methods are described for eliminating void formation during the fabrication of and/or operation of memory cells/devices. According to one aspect of the present disclosure, the methods to eliminate voids include formation of an opening on a semiconductor structure, formation of a diffusion barrier layer, deposition of a metal into the opening, preamorphization of the metal using preamorphization implants, and formation of a conductivity facilitating layer. According to another aspect of the present disclosure, the methods to eliminate voids include formation of an opening on a semiconductor structure, formation of a diffusion barrier layer, deposition of a metal into the opening, preamorphization of the metal using a contact with a plasma, and formation of a conductivity facilitating layer.
Abstract:
A method of forming a fully silicidized gate of a semiconductor device includes forming silicide in active regions and a portion of a gate. A shield layer is blanket deposited over the device. The top surface of the gate electrode is then exposed. A refractory metal layer is deposited and annealing is performed to cause the metal to react with the gate and fully silicidize the gate, with the shield layer protecting the active regions of the device from further silicidization to thereby prevent spiking and current leakage in the active regions.
Abstract:
In the present method of fabricating a semiconductor device, openings of different configurations (for example, different aspect ratios) are provided in a dielectric layer. Substantially undoped copper is deposited over the dielectric layer, filling the openings and extending above the dielectric layer, the different configurations of the openings providing an upper surface of the substantially undoped copper that is generally non-planar. A portion of the substantially undoped copper is removed to provide a substantially planar upper surface thereof, and a layer of doped copper is deposited on the upper surface of the substantially undoped copper. An anneal step is undertaken to difffuse the doping element into the copper in the openings.
Abstract:
A self-aligned silicide process that can accommodate a low thermal budget and form silicide regions of small dimensions in a controlled reaction. In a first temperature treatment, nickel metal or nickel alloy is reacted with a silicon material to form at least one high resistance nickel silicide region. Unreacted nickel is removed. A dielectric layer is then deposited over a high resistance nickel silicide regions. In a second temperature treatment, the at least one high resistance nickel silicide region and dielectric layer are reacted at a prescribed temperature to form at least one low resistance silicide region and process the dielectric layer. Bridging between regions is avoided by the two-step process as silicide growth is controlled, and unreacted nickel between silicide regions is removed after the first temperature treatment. The processing of the high resistance nickel silicide regions and the dielectric layer are conveniently combined into a single temperature treatment.
Abstract:
Bridging between nickel silicide layers on a gate electrode and source/drain regions along silicon nitride sidewall spacers is prevented, after silicidation and removal of any unreacted nickel, by treating the exposed surfaces of the silicon nitride sidewall spacers with a HDP plasma to oxidize nickel silicide thereon forming a surface layer comprising silicoin oxide and silicon oxynitride. Embodiments include treating the silicon nitride sidewall spacers with a HDP plasma to form a surface silicon oxide/silicon oxynitride region having a thickness of about 40 Å to about 50 Å.
Abstract:
The reliability and performance of planarized metallization patterns in an electrical device, for example copper, inlaid in the surface of a layer of dielectric material overlying a semiconductor wafer substrate, are enhanced by a method for reliably depositing a barrier layer selective to the metallization patterns. The method comprises forming a sacrificial dielectric layer above a substrate. Metallization patterns are formed in the sacrificial dielectric layer. The barrier layer is selectively deposited on the metallization patterns. Portions of the barrier material undesirably deposited on the sacrificial dielectric layer are removed by removing the sacrificial dielectric layer, thus preventing bridging of adjacent metallization features by the barrier layer portions. An interlevel dielectric layer is then formed in place of the sacrificial dielectric layer. The selectively deposited barrier layer advantageously reduces parasitic capacitance between metallization features in comparison to a conventional blanket-deposited silicon nitride barrier layer.
Abstract:
An apparatus and method for detecting an endpoint for an etching process utilize a reaction chamber with an ion source and detector placed within the reaction chamber. The ion source directs a primary beam of ions towards a wafer so that the ion beam impacts the top layer of the wafer. A detector detects primary ions reflected from the wafer and secondary ions scattered from the wafer. A value is determined that corresponds to the amount of reflected and scattered ions. A change in the value indicates that the ion beam is impacting a layer beneath the top layer of the wafer, and signifies the reaching of the etch process endpoint.
Abstract:
A semiconductor device having a reduced resistance-capacitance time constant is formed by treating a dielectric layer to reduce its dielectric constant. Embodiments include exposing a deposited dielectric layer to ionic radiation, as with Helium ion implantation, to form voids within the layer, thereby reducing its dielectric constant.