Abstract:
Systems and methods presented herein provide for an LTE wireless communication system operating in a Radio Frequency (RF) band with a conflicting wireless system. The LTE system includes an eNodeB operable to detect a plurality of UEs in the RF band, to generate LTE frames for downlink communications to the UEs, and to time-divide each LTE frame into a plurality of subframes. The eNodeB is also operable to condense the downlink communications into a first number of the subframes that frees data from a remaining number of the subframes in each LTE frame, and to burst-transmit the first number of the subframes of each LTE frame in the RF band.
Abstract:
Systems and methods presented herein provide for improving communications when encountering aggressive communication systems. In one embodiment, a communication system comprises a wireless access point operable to link a first user equipment (UE) to a WiFi network via a contention based mode that directs the WAP to share radio frequency spectrum with other WAPs. The communication system also comprises a communication processor operable to query at least the first UE to determine aggressive radio frequency (RF) band activity by another communication system in range of the WAP, to determine that the aggressive RF band activity by the other communication system is pushing communication with the first UE via the WAP below a threshold level, and based on the determination, direct the WAP to switch to a contention free mode to communicate with the first UE in contention free mode.
Abstract:
The present system and method provides a spatial multiplexing scenario that is performed purely in the analog domain when transmit and receive arrays are in Line of Sight (LoS) and hence significantly reduce the DSP requirements of massive MIMO systems.
Abstract:
Managing connections to be established between clients and access points for the purposes of accessing wireless services is contemplated. The connections may be managed according to a predictive load balancing strategy where connections may be established and adjusted in anticipation of predicted client demands, such as to achieve an optimized throughput.
Abstract:
Systems and methods presented herein provide for improving communications when encountering aggressive communication systems. In one embodiment, a communication system includes a WAP operable to link a UE to a communication network via a communication protocol and a communications processor operable with the WAP to detect another communication system operating within a range of the WAP, and to determine that the other communication system is operating via another communication protocol that differs from the communication protocol of the communication network based on UEs in range of the WAP. The UEs are operable to communicate via both communication protocols. The communications processor queries the UEs in the range of the WAP to determine which of the UEs are communicating via the other communication protocol, and estimates a rate of successful communication with the UE via the WAP based on a number of UEs communicating via the other communication protocol.
Abstract:
The present system and method provides a spatial multiplexing scenario that is performed purely in the analog domain when transmit and receive arrays are in Line of Sight (LoS) and hence significantly reduce the DSP requirements of massive MIMO systems.
Abstract:
Systems and methods presented herein provide for improving communications when encountering aggressive communication systems. In one embodiment, a communication system includes a WAP operable to link a UE to a communication network via a communication protocol and a communications processor operable with the WAP to detect another communication system operating within a range of the WAP, and to determine that the other communication system is operating via another communication protocol that differs from the communication protocol of the communication network based on UEs in range of the WAP. The UEs are operable to communicate via both communication protocols. The communications processor queries the UEs in the range of the WAP to determine which of the UEs are communicating via the other communication protocol, and estimates a rate of successful communication with the UE via the WAP based on a number of UEs communicating via the other communication protocol.
Abstract:
Systems and methods presented herein provide for altering communications of a LTE wireless communication system operating in an RF band with a conflicting WiFi system. In one embodiment, an LTE system includes a wireless base station operable to transmit downlink communications to a UE in the RF band and to receive uplink communications from the UE in the RF band. The LTE system also includes a processor operable to detect the uplink communications from the UE, to estimate a location of the UE based on the detected uplink communications, to determine a communication capability between the UE and the wireless base station based on the location of the UE, and to downgrade the downlink communications from the wireless base station to the UE based on the determined communication capability to avoid interference with the WiFi communication system.
Abstract:
Managing Internet Protocol (IP) flows to produce multi-connection communication is contemplated, such as but not necessarily limited to managing a single IP flow simultaneously through disparate physical layers (PHYs). A unification sublayer may be configured as a logical interface between a network layer and a data link layer and/or the disparate PHYs to facilitating partitioning of IP packets included in the IP flow.
Abstract:
Managing Internet Protocol (IP) flows to produce multi-connection communication is contemplated, such as but not necessarily limited to managing a single IP flow simultaneously through disparate physical layers (PHYs). A unification sublayer may be configured as a logical interface between a network layer and a data link layer and/or the disparate PHYs to facilitating partitioning of IP packets included in the IP flow.