摘要:
In a replacement gate scheme, after formation of a gate dielectric layer, a work function material layer completely fills a narrow gate trench, while not filling a wide gate trench. A dielectric material layer is deposited and planarized over the work function material layer, and is subsequently recessed to form a dielectric material portion overlying a horizontal portion of the work function material layer within the wide gate trench. The work function material layer is recessed employing the dielectric material portion as a part of an etch mask to form work function material portions. A conductive material is deposited and planarized to form gate conductor portions, and a dielectric material is deposited and planarized to form gate cap dielectrics.
摘要:
In a replacement gate scheme, after formation of a gate dielectric layer, a work function material layer completely fills a narrow gate trench, while not filling a wide gate trench. A dielectric material layer is deposited and planarized over the work function material layer, and is subsequently recessed to form a dielectric material portion overlying a horizontal portion of the work function material layer within the wide gate trench. The work function material layer is recessed employing the dielectric material portion as a part of an etch mask to form work function material portions. A conductive material is deposited and planarized to form gate conductor portions, and a dielectric material is deposited and planarized to form gate cap dielectrics.
摘要:
A method is provided that includes first etching a substrate according to a first mask. The first etching forms a first etch feature in the substrate to a first depth. The first etching also forms a sliver opening in the substrate. The sliver opening may then be filled with a fill material. A second mask may be formed by removing a portion of the first mask. The substrate exposed by the second mask may be etched with a second etch, in which the second etching is selective to the fill material. The second etching extends the first etch feature to a second depth that is greater than the first depth, and the second etch forms a second etch feature. The first etch feature and the second etch feature may then be filled with a conductive metal.
摘要:
A high programming efficiency electrical fuse is provided utilizing a dual damascene structure located atop a metal layer. The dual damascene structure includes a patterned dielectric material having a line opening located above and connected to an underlying via opening. The via opening is located atop and is connected to the metal layer. The dual damascene structure also includes a conductive feature within the line opening and the via opening. Dielectric spacers are also present within the line opening and the via opening. The dielectric spacers are present on vertical sidewalls of the patterned dielectric material and separate the conductive feature from the patterned dielectric material. The presence of the dielectric spacers within the line opening and the via opening reduces the area in which the conductive feature is formed. As such, a high programming efficiency electrical fuse is provided in which space is saved.
摘要:
A stack of a first metal line and a first dielectric cap material portion is formed within a line trench of first dielectric material layer. A second dielectric material layer is formed thereafter. A line trench extending between the top surface and the bottom surface of the second dielectric material layer is patterned. A photoresist layer is applied over the second dielectric material layer and patterned with a via pattern. An underlying portion of the first dielectric cap material is removed by an etch selective to the dielectric materials of the first and second dielectric material layer to form a via cavity that is laterally confined along the widthwise direction of the line trench and along the widthwise direction of the first metal line. A dual damascene line and via structure is formed, which includes a via structure that is laterally confined along two independent horizontal directions.
摘要:
A method for forming structure aligned with features underlying an opaque layer is provided for an interconnect structure, such as an integrated circuit. In one embodiment, the method includes forming an opaque layer over a first layer, the first layer having a surface topography that maps to at least one feature therein, wherein the opaque layer is formed such that the surface topography is visible over the opaque layer. A second feature is positioned and formed in the opaque layer by reference to such surface topography.
摘要:
A metal interconnect structure, which includes metal alloy capping layers, and a method of manufacturing the same. The originally deposited alloy capping layer element within the interconnect features will diffuse into and segregate onto top surface of the metal interconnect. The metal alloy capping material is deposited on a reflowed copper surface and is not physically in contact with sidewalls of the interconnect features. Thus, there is a reduction in electrical resistivity impact from residual alloy elements in the interconnect structure. That is, there is a reduction, of alloy elements inside the features of the metal interconnect structure. The metal interconnect structure includes a dielectric layer with a recessed line, a liner material on sidewalls, a copper material, an alloy cap, and a capping layer.
摘要:
Methods of forming an integrated circuit structure utilizing a selectively formed and at least partially oxidized metal cap over a gate, and associated structures. In one embodiment, a method includes providing a precursor structure including a transistor having a metal gate; forming an etch stop layer over an exposed portion of the metal gate; at least partially oxidizing the etch stop layer; and forming a dielectric layer over the at least partially oxidized etch stop layer.
摘要:
Embodiments of the present invention provide a structure. The structure includes a plurality of field-effect-transistors having gate stacks formed on top of a semiconductor substrate, the gate stacks having spacers formed at sidewalls thereof; and one or more conductive contacts formed directly on top of the semiconductor substrate and interconnecting at least one source/drain of one of the plurality of field-effect-transistors to at least one source/drain of another one of the plurality of field-effect-transistors, wherein the one or more conductive contacts is part of a low-profile local interconnect that has a height lower than a height of the gate stacks.
摘要:
Embodiments of the present invention provide a method of forming borderless contact for transistor. The method may include forming a gate of a transistor, on top of a substrate, and spacers adjacent to sidewalls of the gate; forming a sacrificial layer surrounding the gate; causing the sacrificial layer to expand in height to become higher than the gate, the expanded sacrificial layer covering at most a portion of a top surface of the spacers and thereby leaving an opening on top of the gate surrounded by the spacers; filling the opening with a dielectric cap layer; replacing the expanded sacrificial layer with a dielectric layer; and forming a conductive stud contacting source/drain of the transistor, the conductive stud being isolated from the gate by the dielectric cap layer.