摘要:
The invention includes a target construction having a sputtering region and a flange region laterally outward relative to the sputtering region. The flange region has a front surface disposed on a front face of the construction and a back surface opposing the front surface. An o-ring groove is disposed within the flange region. The o-ring groove has a planar base surface which has a first width and has an orifice disposed along the front surface of the flange. The orifice has a second width as measured parallel relative to the base surface. The second width is greater than the first width. The flange surfaces can additionally be protected from rubbing by a layer of protective material.
摘要:
The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
摘要:
The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
摘要:
The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
摘要:
The invention encompasses a method of forming a metallic article. An ingot of metallic material is provided, and such ingot has an initial thickness. The ingot is subjected to hot forging. The product of the hot forging is quenched to fix an average grain size of less than 250 microns within the metallic material. The quenched material can be formed into a three dimensional physical vapor deposition target. The invention also includes a method of forming a cast ingot. In particular aspects, the cast ingot is a high-purity copper material. The invention also includes physical vapor deposition targets, and magnetron plasma sputter reactor assemblies.
摘要:
Methods for producing PVD sputtering targets comprising extended sidewalls are described that include: a) bonding a surface material to a core material to produce a rough part; b) forming the rough part; and in some embodiments, c) utilizing at least one machining step to form the target. In addition, methods for producing PVD sputtering targets comprising extended sidewalls are described herein that include: a) concurrently bonding a surface material to a core material to produce a rough part and forming the rough part; and in some embodiments, b) utilizing at least one machining step to form the target. PVD sputtering targets and related apparatus formed by and utilizing these methods are also described herein.
摘要:
The invention includes physical vapor deposition targets formed of copper material and having an average grain size of less than 50 microns and an absence of course-grain areas throughout the target. The invention encompasses a physical vapor deposition target, of a copper material and having an average grain size of less than 50 microns with a grain size standard deviation of fess than 5% (1−σ) throughout the target. The copper material is selected from copper alloys and high-purity copper material containing greater than or equal to 99.9999% copper, by weight. The invention includes methods of forming copper physical vapor deposition targets. An as-cast copper material is subjected to a multistage processing. Each stage of the multistage processing includes a heating event, a hot-forging event, and a water quenching event. After the multistage processing the copper material is roiled to produce a target blank.
摘要:
A sputtering target is described herein, which includes: a) a surface material, and b) a core material coupled to the surface material, wherein at least one of the surface material or the core material has less than 100 ppm defect volume. Methods for producing sputtering targets are described that include: a) providing at least one sputtering target material, b) melting the at least one sputtering target material to provide a molten material, c) degassing the molten material, d) pouring the molten material into a target mold. In some embodiments, pouring the molten material into a target mold comprises under-pouring or under-skimming the molten material from the crucible into the target mold. Sputtering targets and related apparatus formed by and utilizing these methods are also described herein. In addition, uses of these sputtering targets are described herein.
摘要:
Sputtering targets having reduced burn-in times are described herein that include: a) a machine-finished surface material having an average grain size, and b) a core material having an average grain size, wherein the machine-finished surface material has an average surface roughness (Ra) equal to or less than about the average grain size of at least one of the surface material or the core material. Sputtering targets having reduced burn-in times are described herein that include: a surface material, and a core material, wherein at least one of the surface material or the core material comprises a relatively band-free crystallographic orientation. In addition, methods of producing sputtering targets having reduced burn-in times include: providing a surface material having at least some residual surface damage, providing a core material, coupling the surface material to the core material, and machine-finishing the surface material to an average surface roughness (Ra) equal to or less than about the average grain size of at least one of the surface material or the core material. Also, methods of producing sputtering targets having reduced burn-in times include: providing a surface material combined with a core material, wherein the surface material has at least some residual surface damage and machine-finishing the surface material to an average surface roughness (Ra) equal to or less than about the average grain size of at least one of the surface material or the core material.
摘要:
The invention includes a method of forming a heat treated sputtering target assembly. A backing plate is diffusion bonded to a sputtering target to produce a sputtering target assembly. The sputtering target assembly is heat treated to precipitation harden the backing plate of the assembly. The heat treatment includes heating and quenching, with the quenching being performed by immersing the backing plate in a quenchant without submerging the sputtering target.