摘要:
According to a mask pattern generating method of the embodiments, an undesired pattern, which is transferred onto a substrate due to an auxiliary pattern when an on-substrate pattern is formed on the substrate by using a mask pattern in which the auxiliary pattern is placed, is extracted as an undesired transfer pattern. Then, the mask pattern is corrected by changing a size of the auxiliary pattern according to a size and a position of the undesired transfer pattern.
摘要:
A method of manufacturing a semiconductor device, which forms a pattern by performing pattern transformation steps multiple times, comprises setting finished pattern sizes for patterns to be formed in each consecutive two pattern transformation steps among the plurality of pattern transformation steps based on a possible total amount of in-plane size variation of the patterns to be formed in the consecutive two pattern transformation steps.
摘要:
A pattern dimension calculation method according to one embodiment calculates a taper shape of a mask member used as a mask when a circuit pattern is processed in an upper layer of the circuit pattern formed on a substrate. The method calculates an opening angle facing the mask member from a shape prediction position on the circuit pattern on the basis of the taper shape. The method calculates a dimension of the circuit pattern according to the opening angle formed at the shape prediction position.
摘要:
A design layout data creating method includes creating design layout data of a semiconductor device such that patterns formed on a wafer when patterns corresponding to the design layout data are formed on the wafer have a pattern coverage ratio within a predetermined range in a wafer surface and total peripheral length of the patterns formed on the wafer when the patterns corresponding to the design layout are formed on the wafer is pattern peripheral length within a predetermined range.
摘要:
A mask pattern data creation method includes: determining whether or not a spacing of adjacent assist pattern feature data is not more than a prescribed spacing, based on: initial position data indicating an initially set position of the assist pattern feature data determined based on an illumination condition; and initial size data indicating an initially set size of the assist pattern feature data satisfying a size condition to not optically form an image on the transfer destination; and moving at least one of the adjacent assist pattern feature data or reducing a size of the at least one to increase the spacing of the assist pattern feature data to exceed a prescribed spacing in the case where it is determined that the spacing of the assist pattern feature data is not more than the prescribed spacing.
摘要:
According to one embodiment, a design method of layout formed by a sidewall method is provided. The method includes: preparing a base pattern on which a plurality of first patterns extending in a first direction and arranged at a first space in a second direction intersecting the first direction and a plurality of second patterns extending in the first direction and arranged at a center between the first patterns, respectively, are provided; and drawing a connecting portion which extends in the second direction and connects two neighboring first patterns sandwiching one of the second patterns, and separating the one of the second patterns into two patterns not contacting the connecting portion.
摘要:
According to a sub-resolution assist feature arranging method in embodiments, it is selected which of a rule base and a model base is set for which pattern region on pattern data corresponding to a main pattern as a type of the method of arranging the sub-resolution assist feature for improving resolution of the main pattern formed on a substrate. Then, the sub-resolution assist feature by the rule base is arranged in a pattern region set as the rule base and the sub-resolution assist feature by the model base is arranged in a pattern region set as the model base.
摘要:
According to one embodiment, a method of manufacturing a nonvolatile semiconductor storage device includes a memory-cell forming step, a first wire forming step, and a second wire forming step. The memory-cell forming step is forming dummy memory cells arranged at a predetermined space apart from an end memory cell located at an end of a group of memory cells set in contact with the same first or second wire among the memory cells, the dummy memory cells having a laminated structure same as that of the memory cells and being set in contact with no second wire.
摘要:
A method for manufacturing a semiconductor device of one embodiment of the present invention includes: forming an insulation layer to be processed over a substrate; forming a first sacrificial layer in a first area over the substrate, the first sacrificial layer being patterned to form in the first area a functioning wiring connected to an element; forming a second sacrificial layer in a second area over the substrate, the second sacrificial layer being patterned to form in the second area a dummy wiring; forming a third sacrificial layer at a side wall of the first sacrificial layer and forming a fourth sacrificial layer at a side wall of the second sacrificial layer, the third sacrificial layer and the fourth sacrificial layer being separated; forming a concavity by etching the insulation layer to be processed using the third sacrificial layer and the fourth sacrificial layer as a mask; and filling a conductive material in the concavity.
摘要:
In one embodiment, a mask pattern verification apparatus is disclosed. The mask pattern verification apparatus can include a library registration portion registered a clean circuit pattern, a memory portion saved a design circuit pattern, a verification circuit pattern, a verification mask pattern, and a verification wafer pattern, a mask verification portion performing mask verification to the verification mask pattern, a lithography verification portion performing lithography verification to the verification wafer pattern, and a CPU including a library registration circuit registering the clean circuit pattern to the library registration portion, a pattern matching circuit verifying the clean circuit pattern being set or not in the design circuit pattern, a verification pattern extraction circuit extracting the verification circuit pattern from the design circuit pattern, an OPC circuit performing OPC to the verification circuit pattern, a mask verification circuit controlling the mask verification portion, and a lithography verification circuit controlling the lithography verification portion.