Abstract:
This disclosure describes filter media and mask filters and face mask systems including those filter media. In one aspect, the filter media includes a fibrous media including multi-component binder fibers, glass fibers, and microfibrillated cellulose fibers. In some aspects, the fibrous media further includes PET fibers. In another aspect, the filter media includes an electrostatically charged filter media, a fine fiber layer, and a scrim. In yet another aspect, the filter media includes two fine fiber layers, and two scrims. In additional aspects, the filter media includes bicomponent fibers, polyethylene terephthalate fibers, and microfibrillated cellulose fibers. In a further aspect, the filter media includes a support layer, a continuous fine fiber layer, and an efficiency layer. Combinations and composites of the filter media are also contemplated.
Abstract:
Disclosed are improved polymer materials. Also disclosed are fine fiber materials that can be made from the improved polymeric materials in the form of microfiber and nanofiber structures. The microfiber and nanofiber structures can be used in a variety of useful applications including the formation of filter materials.
Abstract:
A fiber can be made having a structure with an axial core and a coating layer. The fiber can have a polymer core and one or two layers surrounding the core. The fine fiber can be made from a polymer material and a resinous aldehyde composition such that the general structure of the fiber has a polymer core surrounded by at least a layer of the resinous aldehyde composition.
Abstract:
This disclosure describes a filter medium that minimizes the adverse effects of variations in flow rate on filter medium efficiency without a corresponding increase in pressure drop. The filter medium includes a support layer, a continuous fine fiber layer, and an efficiency layer. The continuous fine fiber layer includes a continuous fine fiber that has a diameter of up to 10 micrometers and is located downstream of the efficiency layer.
Abstract:
Disclosed are improved polymer materials. Also disclosed are fine fiber materials that can be made from the improved polymeric materials in the form of microfiber and nanofiber structures. The microfiber and nanofiber structures can be used in a variety of useful applications including the formation of filter materials.
Abstract:
A fine fiber can be made having a structure with an axial core and a coating layer. The fiber can have a polymer core and one or two layers surrounding the core. The fine fiber can be made from a polymer material and a resinous aldehyde (e.g., melamine-aldehyde) composition such that the general structure of the fiber has a polymer core surrounded by at least a layer of the resinous aldehyde composition.
Abstract:
A fiber can be made having a structure with an axial core and a coating layer. The fiber can have a polymer core and one or two layers surrounding the core. The fine fiber can be made from a polymer material and a resinous aldehyde composition such that the general structure of the fiber has a polymer core surrounded by at least a layer of the resinous aldehyde composition.
Abstract:
Disclosed are improved polymer materials. Also disclosed are fine fiber materials that can be made from the improved polymeric materials in the form of microfiber and nanofiber structures. The microfiber and nanofiber structures can be used in a variety of useful applications including the formation of filter materials.
Abstract:
The present disclosure provides a unique fine fiber material that is formed from a fiber-forming polyamide with a fluorochemical urethane additive, a method of making such fiber material, as well as filter media and filter elements including such fibers.
Abstract:
The present disclosure provides a unique fine fiber material that is formed from a fiber-forming polyamide with a fluorochemical urethane additive, a method of making such fiber material, as well as filter media and filter elements including such fibers.