摘要:
The disclosed power-on reset circuit provides an indication of when and whether a supply voltage Vdd has reached a trigger voltage level Vtrig. The disclosed circuit includes a flip-flop circuit and a first comparator circuit. The circuit according to the invention has a D input node of the flip-flop circuit coupled to the supply voltage. The first comparator circuit outputs a clock signal, where the flip-flop circuit is clocked by the clock signal. A Q output node of the flip-flop circuit provides the power-on reset signal, where the power-on reset signal is in a LO state when the supply voltage is at a voltage level that is less than the trigger voltage level Vtrig. The power-on reset signal is in a HI state when the supply voltage is at a voltage level that is greater than the trigger voltage level Vtrig.
摘要:
The disclosed power-on reset circuit provides an indication of when and whether a supply voltage Vdd has reached a trigger voltage level Vtrig. The disclosed circuit includes a flip-flop circuit and a first comparator circuit. The circuit according to the invention has a D input node of the flip-flop circuit coupled to the supply voltage. The first comparator circuit outputs a clock signal, where the flip-flop circuit is clocked by the clock signal. A Q output node of the flip-flop circuit provides the power-on reset signal, where the power-on reset signal is in a LO state when the supply voltage is at a voltage level that is less than the trigger voltage level Vtrig. The power-on reset signal is in a HI state when the supply voltage is at a voltage level that is greater than the trigger voltage level Vtrig.
摘要:
A variable phase amplifier circuit is disclosed and its method of use in tuning devices having resonators. The variable phase amplifier receives an input differential signal pair. The input differential signal pair can be generated by a resonator device. The variable phase amplifier generates a modified differential signal pair in response to receiving the input differential signal pair. The variable phase amplifier provides a means to vary the phase of the modified differential signal pair with respect to the input differential signal pair, in an accurate and stable manner. If the modified differential signal pair with a phase shift introduced in it is fed back to the resonator device, the resonator will change its frequency of oscillation, where the new frequency of oscillation is a function of the phase of the modified differential signal pair.
摘要:
A variable phase amplifier circuit is disclosed and its method of use in tuning devices having resonators. The variable phase amplifier receives an input differential signal pair. The input differential signal pair can be generated by a resonator device. The variable phase amplifier generates a modified differential signal pair in response to receiving the input differential signal pair. The variable phase amplifier provides a means to vary the phase of the modified differential signal pair with respect to the input differential signal pair, in an accurate and stable manner. If the modified differential signal pair with a phase shift introduced in it is fed back to the resonator device, the resonator will change its frequency of oscillation, where the new frequency of oscillation is a function of the phase of the modified differential signal pair.
摘要:
Frequency synthesizers for use with oscillators that generate an arbitrary frequency are described, as well as related devices and methods. Divider information can be generated or otherwise accessed for use in configuring a phase lock loop device that is adapted for coupling with the oscillator, where the phase lock loop device can include a plurality of integer dividers without utilizing a fractional divider, where the divider information can include frequency deviations corresponding to groups of integer divider settings for the phase lock loop device, and where each deviation of the frequency deviations can be based on a frequency differential between a standard operating frequency and an output frequency for the phase lock loop utilizing one group of integer divider settings from the groups of integer divider settings.
摘要:
Devices having piezoelectric material structures integrated with substrates are described. Fabrication techniques for forming such devices are also described. The fabrication may include bonding a piezoelectric material wafer to a substrate of a differing material. A structure, such as a resonator, may then be formed from the piezoelectric material wafer.
摘要:
Methods and apparatus for tuning devices having mechanical resonators are described. In one implementation, a mechanical resonator and a phase shifter are configured in a feedback loop, so that the phase shifter shifts the phase of the resonator output signal. The amount of phase shift induced by the phase shifter may be variable. In another implementation, an LC tuning subcircuit is coupled to a mechanical resonator. In some implementations, the LC tuning subcircuit has a variable capacitance. One or more of the apparatus described herein may be implemented as part, or all, of a microelectromechanical system (MEMS).
摘要:
Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.
摘要:
Multi-port devices having multiple electrical ports are described, as are related methods. Some of the multi-port devices may have two input ports and two output ports, and may be driven differentially, in a single-ended mode, in a single-ended to differential mode, or in a differential to single-ended mode. The multi-port devices may include one or more transducers coupled to the electrical ports.
摘要:
Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.