Abstract:
There is provided a master for micro flow path creation, a transfer copy, and a method for producing a master for micro flow path creation by which transfer copies having an area with high hydrophilicity can be easily mass-produced, the master for micro flow path creation including: a base material; a main concave-convex portion provided on a surface of the base material and extending in a planar direction of the base material; and a fine concave-convex portion provided on a surface of the main concave-convex portion and having a narrower pitch than the main concave-convex portion. The fine concave-convex portion has an arithmetic average roughness of 10 nm to 150 nm and has a specific surface area ratio of 1.1 to 3.0.
Abstract:
An optical body including: a first optical layer which has a surface having a convex profile in which a plurality of one-directionally extending elongated convex portions are one-dimensionally aligned in one direction; an inorganic layer disposed on the surface of the first optical layer on a side having the convex profile and a second optical layer disposed on a side of the inorganic layer so that the convex profile is embedded; wherein the convex profile meets at least one of the following (1) to (4): (1) a height varies in an extending direction in each of the elongated convex portions, (2) a ridge portion meanders in a direction perpendicular to both the extending direction and a height direction of the convex portion in each of the elongated convex portions, (3) heights of the elongated convex portions adjacent to each other are different from each other, and (4) a triangular prism-shaped convex portion and an elongated convex portion having a curved surface are adjacent to each other.
Abstract:
A replica master mold 10 comprises: a base material layer 11; and a surface shape body 12 formed on the base material layer 11 and having a fine irregular pattern, wherein a softening temperature of the surface shape body 12 is higher than a softening temperature of the base material layer 11.
Abstract:
To prevent defects in microparticles from occurring in a case of arraying the microparticles having a diameter of less than or equal to 50 μm on a base material. Provided is a microparticle arraying mask for arraying microparticles having a diameter of less than or equal to 50 μm on a base material. The microparticle arraying mask has through-holes into which the microparticles are inserted. An opening plane of the through-holes on a microparticle supply side has an area smaller than an area of an opening plane of the through-holes on a microparticle discharge side. In a case of assuming that a direction from the opening plane on the microparticle supply side to the opening plane on the microparticle discharge side is a positive direction of a z-axis, and a sectional area of the through-holes vertical to the z-axis is A, dA(z)/dz>0 holds in a whole region in the through-holes along the z-axis, and Expression (1) below is satisfied: 0.4≤t/d≤1.0 (1).
Abstract:
There is provided a master for micro flow path creation, a transfer copy, and a method for producing a master for micro flow path creation by which transfer copies having an area with high hydrophilicity can be easily mass-produced, the master for micro flow path creation including: a base material; a main concave-convex portion provided on a surface of the base material and extending in a planar direction of the base material; and a fine concave-convex portion provided on a surface of the main concave-convex portion and having a narrower pitch than the main concave-convex portion. The fine concave-convex portion has an arithmetic average roughness of 10 nm to 150 nm and has a specific surface area ratio of 1.1 to 3.0.
Abstract:
An optical body has an anti-reflection function and can be produced without repeating sequential coating to stack a low refractive index layer and a high refractive index layer. The optical body having an anti-reflection function includes a minute concave-convex surface having fluctuations. The minute concave-convex surface has an arithmetic average roughness Ra of smaller than or equal to 25 nm.
Abstract:
A microfabrication method is provided with which it is possible to easily form a fine periodic structure on a surface of any substrate. A glass precursor is applied to a substrate, and the glass precursor is irradiated with short-pulse laser light. By the irradiation with short-pulse laser light, the glass precursor is activated to undergo a thermal reaction, and a fine periodic structure can be easily formed on the surface. Furthermore, by oxidizing the substrate on which the fine periodic structure has been formed, the hue of the surface can be improved while maintaining the fine periodic structure.