Abstract:
A PFC circuit is provided. A first bridge rectifier receives an AC voltage. A power converter includes a switch and receives an output of the first bridge rectifier, converts the output to a first DC voltage, and supplies the first DC voltage to a DC bus to power a compressor. A second bridge rectifier receives the AC voltage and bypasses at least one of the first bridge rectifier, a choke and a diode of the PFC circuit to provide a rectified AC voltage out of the second bridge rectifier to the DC bus to power the compressor. A control module controls operation of a driver to transition the switch between open and closed states to adjust a second DC voltage on the DC bus, where the second DC voltage, depending on the AC and second DC voltages, is based on the first DC voltage or the rectified AC voltage.
Abstract:
A power factor correction (PFC) system includes a desired OFF period module that determines a desired OFF period for a switch of a PFC circuit based on an input voltage to the PFC circuit and an output voltage of the PFC circuit. A switching control module transitions the switch from an ON state to an OFF state when a measured current through an inductor of the PFC circuit is greater than a demanded current through the inductor and maintains the switch in the OFF state for the desired OFF period after the transition from the ON state to the OFF state.
Abstract:
A circuit for driving a motor of a compressor includes a microcontroller, which includes an op-amp, a comparator, a first serial interface, and a first dedicated pin. The op-amp amplifies a value indicating current in a power factor correction converter, which includes a power switch. The comparator asserts a comparison signal in response to the amplified value exceeding a reference value. The comparison signal is output on the first dedicated pin. A programmable logic device (PLD) includes a second serial interface in communication with the first serial interface and a second dedicated pin. The comparison signal is received on the second dedicated pin and the PLD receives control messages from the microcontroller via the second serial interface. The PLD sets a value in an off-time register based on a control message from the microcontroller. The PLD controls the power switch according to the comparison signal and the off-time register.
Abstract:
A control system for a refrigeration system motor includes an angle determination module that generates an output rotor angle indicating a desired angle of a rotor of the motor. A control module controls the motor based on the output rotor angle. An estimator module determines an estimated rotor angle. A transition module generates a transition signal in response to convergence of the estimator module. Upon startup, the angle determination module generates the output rotor angle based on a first rotor angle. Upon generation of the transition signal, the angle determination module generates the output rotor angle based on the first rotor angle and the estimated rotor angle. After generation of the transition signal, the angle determination module reduces a contribution of the first rotor angle to the output rotor angle over time until the output rotor angle is based on the estimated rotor angle independent of the first rotor angle.
Abstract:
A control system for a motor in a refrigeration system includes an angle determination module configured to generate an output rotor angle indicative of a desired angle of a rotor of the motor. The control system controls current supplied to the motor based on the output rotor angle. The control system determines an estimated rotor angle of the motor. The angle determination module, upon startup of the motor, generates the output rotor angle based on a first rotor angle. Upon generation of a transition signal, the angle determination module generates the output rotor angle based on both the first rotor angle and the estimated rotor angle. Subsequent to generation of the transition signal, the angle determination module reduces a contribution of the first rotor angle to the output rotor angle over time until the output rotor angle is based on the estimated rotor angle independent of the first rotor angle.
Abstract:
A controller includes a voltage determination module, a bus voltage command module, and a power factor correction (PFC) control module. The voltage determination module determines a desired direct current (DC) bus voltage for a DC bus electrically connected between a PFC module and an inverter power module that drives a motor. The voltage determination module determines the desired DC bus voltage based on at least one of torque of the motor and speed of the motor. The bus voltage command module determines a commanded bus voltage based on the desired DC bus voltage. The PFC control module controls the PFC module to create a voltage on the DC bus that is based on the commanded bus voltage.
Abstract:
A method of operating an electric motor is disclosed. The method includes: determining a d-axis resistance of an electric motor and a Q-axis resistance of the electric motor as a function of a bulk current; determining a d-axis inductance of the electric motor and a Q-axis inductance of the electric motor as a function of the bulk current; generating an estimated flux of the electric motor based on the d-axis resistance of the electric motor, the Q-axis resistance of the electric motor, the d-axis inductance of the electric motor, and the Q-axis inductance of the electric motor; generating an estimated angle of the electric motor based on the estimated flux of the electric motor; and, based on the estimated angle of the electric motor, controlling switching of an inverter that powers the electric motor.
Abstract:
A controller includes a voltage determination module, a bus voltage command module, and a power factor correction (PFC) control module. The voltage determination module determines a desired direct current (DC) bus voltage for a DC bus electrically connected between a PFC module and an inverter power module that drives a motor. The voltage determination module determines the desired DC bus voltage based on at least one of torque of the motor and speed of the motor. The bus voltage command module determines a commanded bus voltage based on the desired DC bus voltage. The PFC control module controls the PFC module to create a voltage on the DC bus that is based on the commanded bus voltage.
Abstract:
A control system for a motor includes a pulse-width modulation module, a pulse skip determination module, and a duty cycle adjustment module. The pulse-width modulation module generates three duty cycle values based on three voltage requests, respectively. A plurality of solid-state switches control three phases of the motor in response to the three duty cycle values, respectively. The pulse skip determination module generates a pulse skip signal. The duty cycle adjustment module selectively prevents the plurality of solid-state switches from switching during intervals specified by the pulse skip signal.
Abstract:
A system for controlling a capacity of a compressor includes a motor of the compressor including a main winding connected at a connection point to an auxiliary winding and a drive configured to control a speed of the motor. The system includes a first switch configured to selectively connect the main winding to either a first line voltage or a first output of the drive, a second switch configured to selectively connect the connection point to either a second line voltage or a second output of the drive, and a third switch configured to selectively connect the auxiliary winding to either a capacitor or a third output of the drive. The system includes a solenoid valve configured to selectively either operate in a first capacity or a second capacity. The system includes a control module configured to control the drive, the first switch, the second switch, and the third switch.