Abstract:
Techniques to control power and processing among a plurality of asymmetric cores. In one embodiment, one or more asymmetric cores are power managed to migrate processes or threads among a plurality of cores according to the performance and power needs of the system
Abstract:
Techniques to control power and processing among a plurality of asymmetric cores. In one embodiment, one or more asymmetric cores are power managed to migrate processes or threads among a plurality of cores according to the performance and power needs of the system
Abstract:
Techniques to control power and processing among a plurality of asymmetric processing elements are disclosed. In one embodiment, one or more asymmetric processing elements are power managed to migrate processes or threads among a plurality of processing elements according to the performance and power needs of the system.
Abstract:
Techniques to control power and processing among a plurality of asymmetric cores. In one embodiment, one or more asymmetric cores are power managed to migrate processes or threads among a plurality of cores according to the performance and power needs of the system.
Abstract:
Techniques to control power and processing among a plurality of asymmetric cores. In one embodiment, one or more asymmetric cores are power managed to migrate processes or threads among a plurality of cores according to the performance and power needs of the system.
Abstract:
Techniques to control power and processing among a plurality of asymmetric cores. In one embodiment, one or more asymmetric cores are power managed to migrate processes or threads among a plurality of cores according to the performance and power needs of the system
Abstract:
Techniques to control power and processing among a plurality of asymmetric cores. In one embodiment, one or more asymmetric cores are power managed to migrate processes or threads among a plurality of cores according to the performance and power needs of the system
Abstract:
A technique to promote determinism among multiple clocking domains within a computer system or integrated circuit. In one embodiment, one or more execution units are placed in a deterministic state with respect to multiple clocks within a processor system having a number of different clocking domains.
Abstract:
Techniques to control power and processing among a plurality of asymmetric cores. In one embodiment, one or more asymmetric cores are power managed to migrate processes or threads among a plurality of cores according to the performance and power needs of the system.
Abstract:
The present disclosure is directed to systems and methods of conductively coupling a plurality of relatively physically small core dies to a relatively physically larger base die using an electrical mesh network that is formed in whole or in part in, on, across, or about all or a portion of the base die. Electrical mesh networks beneficially permit the positioning of the cores in close proximity to support circuitry carried by the base die. The minimal separation between the core circuitry and the support circuitry advantageously improves communication bandwidth while reducing power consumption. Each of the cores may include functionally dedicated circuitry such as processor core circuitry, field programmable logic, memory, or graphics processing circuitry. The use of core dies beneficially and advantageously permits the use of a wide variety of cores, each having a common or similar interface to the electrical mesh network.