Abstract:
A powder quality control system includes a powder container, a piston, and at least one sensor. The powder container is configured to contain a powder sample. The piston is configured to compact the powder sample in the powder container. The at least one sensor is configured to measure at least one parameter when the piston compacts the powder sample to facilitate determining a powder quality measurement for the powder sample.
Abstract:
A manufacturing method includes providing a substrate with an outer surface and at least one interior space, selectively deposited a coating on a portion of the substrate to form a selectively deposited coating having one or more grooves formed therein. The method further includes processing at least a portion of the surface of the selectively deposited coating to plastically deform the selectively deposited coating in the vicinity of the top of a respective groove. An additional coating is applied over at least a portion of the surface of the selectively deposited coating. A component is disclosed and includes a substrate, a selectively deposited coating disposed on at least a portion of the substrate, and defining one or more grooves therein, and an additional coating disposed over the selectively deposited coating. The substrate, the selectively deposited coating and the additional coating defining one or more channels for cooling the component.
Abstract:
A system for use in coating an interior surface of an object, the system including a vacuum chamber enclosure defining an interior cavity configured to receive the object, a first electrode positioned within the interior cavity of the vacuum chamber enclosure, and a second electrode positioned within the interior cavity such that a space between the first and second electrodes is at least partially defined by the interior surface of the object. The first electrode is fabricated from a first material and the second electrode is fabricated from a second material. The system includes an arc supply coupled to the first and second electrodes. The arc supply selectively vaporizes material from one of the first electrode and the second electrode when current is supplied from one of the first and second electrodes such that the vaporized material forms a layer of material on the interior surface of the object.
Abstract:
A system for use in coating an interior surface of an object, the system including a vacuum chamber enclosure defining an interior cavity configured to receive the object, a first electrode positioned within the interior cavity of the vacuum chamber enclosure, and a second electrode positioned within the interior cavity such that a space between the first and second electrodes is at least partially defined by the interior surface of the object. The first electrode is fabricated from a first material and the second electrode is fabricated from a second material. The system includes an arc supply coupled to the first and second electrodes. The arc supply selectively vaporizes material from one of the first electrode and the second electrode when current is supplied from one of the first and second electrodes such that the vaporized material forms a layer of material on the interior surface of the object.
Abstract:
A plasma deposition assembly for use in coating an interior surface of an object is provided. The assembly includes a head portion including an anode and a cathode adjacent to the anode. The cathode is fabricated from a coating material. The cathode also includes an outer surface adjacent to the interior surface of the object, wherein current is supplied to the cathode to form an arc on the outer surface such that the coating material is directed substantially radially outward from the outer surface of the cathode towards the interior surface of the object. The assembly also includes a moveable arm coupled to the head portion and configured to translate the head portion relative to the interior surface of the object as the arc deposits the coating material on the interior surface of the object.
Abstract:
Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
Abstract:
A cathodic arc coating system includes alternating layers of at least one of titanium vanadium nitride (TiVN) and titanium silicon vanadium nitride (TiSiVN) disposed on a substrate; and alternating layers of titanium vanadium chromium nitride (TiVCrN) and titanium silicon vanadium nitride (TiSiVCrN) disposed on a substrate. A cathodic arc process includes a sub-hertz variable bias forming the alternating layers of alternating layers of at least one of titanium vanadium nitride (TiVN) and titanium silicon vanadium nitride (TiSiVN) disposed on a substrate; and alternating layers of titanium vanadium chromium nitride (TiVCrN) and titanium silicon vanadium nitride (TiSiVCrN) disposed on a substrate.
Abstract:
Additive manufacturing apparatus including a build module is presented. The build module includes a support structure; a powder supply chamber formed in the support structure; and powder applicator disposed on the support structure and located proximate to the powder supply chamber. The build module further includes a powder recovery chamber and a plurality of build plates spatially disposed around the powder recovery chamber, the plurality of build plates configured to move around the powder recovery chamber. The build module is configured such that during an additive manufacturing process step, a build plate of the plurality of build plates is disposed between the powder supply chamber and the powder recovery chamber, and the powder applicator is configured to distribute a required amount of the powder material from the powder supply chamber on the build plate and deposit any excess powder material in the powder recovery chamber. Related processes are also presented.
Abstract:
A system for use in coating an interior surface of an object is provided. The system includes a vacuum chamber enclosure defining an interior configured to receive the object, and a cathode coupled to the vacuum chamber enclosure. The cathode is fabricated from a coating material and has an outer surface. The cathode is configured such that when a current is applied to the cathode, an arc is formed on the outer surface and the coating material is removed from the cathode to form a cloud of coating material. The system also includes a collimator configured to be positioned between the cathode and the object configured to focus the cloud into a beam of coating material and to direct the beam towards the object, and a magnet configured to alter a path of the beam such that the beam is directed towards the interior surface of the object.
Abstract:
A method of fabricating an airfoil includes imaging a second end of the body portion to obtain image data, casting the tip portion utilizing the image data of the second end of the body portion and coupling a first end of the tip portion to the second end of the body portion. One or more features of the tip portion align with one or more features of the body portion. The method also includes additively manufacturing a core of the tip portion utilizing the image data and forming a casting mold about the core. The tip portion is cast in the casting mold. The coupling of the tip portion to the body portion including depositing a bonding material on a first end of the tip portion. An airfoil formed by the method is also disclosed.