Abstract:
In alternative embodiments, provided are non-natural or genetically engineered vinylisomerase-dehydratase enzymes, including alkenol dehydratases, linalool dehydratases and crotyl alcohol dehydratases. In alternative embodiments, provided are non-natural or genetically engineered polypeptides having an activity comprising, for example, a vinylisomerase-dehydratase, an alkenol dehydratase, a linalool dehydratase and/or a crotyl alcohol dehydratase activity, or a combination thereof. In alternative embodiments, also provided are non-natural or genetically engineered nucleic acids (polynucleotides) encoding polypeptides described herein, expression or cloning vehicles comprising or having contained therein nucleic acids as described herein, and non-natural or genetically engineered cells comprising or having contained therein nucleic acids as described herein. In alternative embodiments, also provided are methods for making various organic compounds, including methyl vinyl carbinol and butadiene.
Abstract:
The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG), or optionally MEG and one or more co-product, from one or more hexose feedstock. The present application also relates to recombinant microorganisms useful in the biosynthesis of glycolic acid (GA), or optionally GA and one or more co-product, from one or more hexose feedstock. The present application relates to recombinant microorganisms useful in the biosynthesis of xylitol, or optionally xylitol and one or more co-product, from one or more hexose feedstock. Also provided are methods of producing MEG (or GA or xylitol), or optionally MEG (or GA or xylitol) and one or more co-product, from one or more hexose feedstock using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or the products MEG (or GA or xylitol), or optionally MEG (or GA or xylitol) and one or more co-product.
Abstract:
The present disclosure relates to biological processes and systems for the production of isopropanol and/or acetone utilizing modified alcohol dehydrogenases that exhibit increased activity with NADH as a cofactor. The disclosure further relates to polynucleotides and polypeptides of the modified alcohol dehydrogenases, and host cells containing the polynucleotides and expressing the polypeptides.
Abstract:
The present disclosure relates to biological processes and systems for the production of isopropanol and/or acetone utilizing modified alcohol dehydrogenases that exhibit increased activity with NADH as a cofactor. The disclosure further relates to polynucleotides and polypeptides of the modified alcohol dehydrogenases, and host cells containing the polynucleotides and expressing the polypeptides.
Abstract:
The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
Abstract:
The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
Abstract:
The present disclosure generally relates to methods of using microorganisms that comprise one or more polynucleotides coding for enzymes in one or more pathways that catalyze a conversion of a fermentable carbon source to butadiene and products and processes derived therefrom.
Abstract:
The present disclosure generally relates to microorganisms that comprise one or more polynucleotides coding for enzymes in one or more pathways that catalyze a conversion of a fermentable carbon source to butadiene. Also provided are methods of using the microorganisms in industrial processes including, for use in the production of butadiene and products derived therefrom.
Abstract:
The present disclosure provides a non-naturally occurring microorganism comprising: one or more polynucleotides encoding one or more enzymes in a pathway that produces acetyl-CoA; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of cytosolic acetyl-CoA to 2-propanol; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of dihydroxyacetone-phosphate to 1-propanol and/or 1,2-propanediol, wherein the microorganism has reduced levels of pyruvate decarboxylase enzymatic activity (e.g., the microorganism comprises a disruption of one or more enzymes that decarboxylate pyruvate and/or a disruption of one or more transcription factors of one or more enzymes that decarboxylate pyruvate), and wherein the microorganism is capable of growing on a C6 sugar as a sole carbon source under anaerobic conditions. Also provided are methods of using the disclosed non-naturally occurring microorganisms in methods for the coproduction of 2-propanol and 1-propanol and/or 1,2-propanediol.
Abstract:
The present disclosure generally relates to methods of using microorganisms that comprise one or more polynucleotides coding for enzymes in one or more pathways that catalyze a conversion of a fermentable carbon source to butadiene and products and processes derived therefrom.