摘要:
The present disclosure provides recombinant microorganisms and methods for the anaerobic production of 2,4-furandicarboxylic acid from one or more carbon sources. The microorganisms and methods provide redox-balanced and ATP positive pathways for co-producing 2,4-furandicarboxylic acid with ethanol and for co-producing 2,4-furandicarboxylic acid with ethanol and 1-propanol. The method provides recombinant microorganisms that express endogenous and/or exogenous nucleic acid molecules encoding polypeptides that catalyze the conversion of a carbon source into 2,4-furandicarboxylic acid and that coupled the 2,4-furandicarboxylic acid pathway with an additional metabolic pathway.
摘要:
Provided are microorganisms that catalyze the synthesis of chemicals and biochemicals from a methanol, methane and/or formaldehyde. Also provided are methods of generating such organisms and methods of synthesizing chemicals and biochemicals using such organisms.
摘要:
Provided are microorganisms that catalyze the synthesis of chemicals and biochemicals from a methanol, methane and/or formaldehyde. Also provided are methods of generating such organisms and methods of synthesizing chemicals and biochemicals using such organisms.
摘要:
The invention relates to preparation of food ingredients enriched with a low-glycemic sugar replacement through enzymatic conversion. Food ingredients may be enriched with, for example, D-tagatose, D-allulose, D-allose, D-mannose, D-talose, and/or inositol by enzymatically converting saccharides found in flour, meal, ground tuber, ground pulse, ground bark, starch, malted grain or malt extract, maltodextrin, cellulose, cellodextrin, any of their derivatives (e.g., amylose, amylopectin, dextrin, cellobiose, etc.), and/or sucrose into D-tagatose, D-allulose, D-allose, D-mannose, D-talose and/or inositol. The enriched material can be used as a food ingredient instead of the low-glycemic sugar being purified for use as a food ingredient.
摘要:
Provided is an engineered pathway that can function in a cell-free system, cellular system or a combination thereof to convert a sugar to a chemical or biofuel.
摘要:
Provided are microorganisms that catalyze the synthesis of chemicals and biochemicals from a methanol, methane and/or formaldehyde. Also provided are methods of generating such organisms and methods of synthesizing chemicals and biochemicals using such organisms.
摘要:
Described are recombinant microorganisms characterized by having phosphoketolase activity, having a diminished or inactivated Embden-Meyerhof-Parnas pathway (EMPP) by inactivation of the gene(s) encoding phosphofructokinase or by reducing phosphofructokinase activity as compared to a non-modified microorganism and having a diminished or inactivated oxidative branch of the pentose phosphate pathway (PPP) by inactivation of the gene(s) encoding glucose-6-phosphate dehydrogenase or by reducing glucose-6-phosphate dehydrogenase activity as compared to a non-modified microorganism. These microorganisms can be used for the production of useful metabolites such as acetone, isobutene or propene.
摘要:
Provided are microorganisms that catalyze the synthesis of chemicals and biochemicals from a methanol, methane and/or formaldehyde. Also provided are methods of generating such organisms and methods of synthesizing chemicals and biochemicals using such organisms.
摘要:
Described are recombinant microorganisms characterized by having phosphoketolase activity, having a diminished or inactivated Embden-Meyerhof-Parnas pathway (EMPP) by inactivation of the gene(s) encoding phosphofructokinase or by reducing phosphofructokinase activity as compared to a non-modified microorganism and having a diminished or inactivated oxidative branch of the pentose phosphate pathway (PPP) by inactivation of the gene(s) encoding glucose-6-phosphate dehydrogenase or by reducing glucose-6-phosphate dehydrogenase activity as compared to a non-modified microorganism. These microorganisms can be used for the production of useful metabolites such as acetone, isobutene or propene.
摘要:
The present invention provides a bacterium which has an ability to produce a useful metabolite derived from acetyl-coenzyme A, such as L-glutamic acid, L-glutamine, L-proline, L-arginine, L-leucine, L-cysteine, succinate, and polyhydroxybutyrate, wherein said bacterium is modified so that activities of D-xylulose-5-phosphate phosphoketolase and/or fructose-6-phosphate phosphoketolase are enhanced. The present invention also provides a method for producing the useful metabolite using the bacterium.