GATE-ALL-AROUND FIELD EFFECT TRANSISTORS WITH ROBUST INNER SPACERS AND METHODS

    公开(公告)号:US20210043727A1

    公开(公告)日:2021-02-11

    申请号:US16534317

    申请日:2019-08-07

    Abstract: A gate-all-around field effect transistor (GAAFET) and method. The GAAFET includes nanosheets, a gate around center portions of the nanosheets, and inner spacers aligned below end portions. The nanosheet end portions are tapered from the source/drain regions to the gate and the inner spacers are tapered from the gate to the source/drain regions. Each inner spacer includes: a first spacer layer, which has a uniform thickness and extends laterally from the gate to an adjacent source/drain region; a second spacer layer, which fills the space between a planar top surface of the first spacer layer and a tapered end portion of the nanosheet above; and, for all but the lowermost inner spacers, a third spacer layer, which is the same material as the second spacer layer and which fills the space between a planar bottom surface of the first spacer layer and a tapered end portion of the nanosheet below.

    Scaled gate contact and source/drain cap

    公开(公告)号:US10892338B2

    公开(公告)日:2021-01-12

    申请号:US16169269

    申请日:2018-10-24

    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a scaled gate contact and source/drain cap and methods of manufacture. The structure includes: a gate structure comprising an active region; source and drain contacts adjacent to the gate structure; a capping material over the source and drain contacts; a gate contact formed directly above the active region of the gate structure and over the capping material; a U-shape dielectric material around the gate contact, above the source and drain contacts; and a contact in direct electrical contact to the source and drain contacts.

    Method of forming wrap-around-contact and the resulting device

    公开(公告)号:US10804398B2

    公开(公告)日:2020-10-13

    申请号:US16160701

    申请日:2018-10-15

    Abstract: A device including source-drain epitaxy contacts with a trench silicide (TS) liner wrapped around the source-drain contacts, and method of production thereof. Embodiments include a device having a gate structure formed over a substrate; source-drain epitaxy contacts including a trench silicide (TS) liner covering the source-drain epitaxy contacts; TS contacts formed on the TS liner over the source-drain epitaxy contacts; and a dielectric pillar disposed in a TS cut between the source-drain epitaxy contacts. The TS liner wraps around the source-drain epitaxy contacts, including bottom negatively tapered surfaces of the source-drain epitaxy contacts.

    STRUCTURES AND SRAM BIT CELLS INTEGRATING COMPLEMENTARY FIELD-EFFECT TRANSISTORS

    公开(公告)号:US20200286900A1

    公开(公告)日:2020-09-10

    申请号:US16295485

    申请日:2019-03-07

    Abstract: Structures and static random access memory bit cells including complementary field effect transistors and methods of forming such structures and bit cells. A first complementary field-effect transistor has a first storage nanosheet transistor, a second storage nanosheet transistor stacked over the first storage nanosheet transistor, and a first gate electrode shared by the first storage nanosheet transistor and the second storage nanosheet transistor. A second complementary field-effect transistor has a third storage nanosheet transistor, a fourth storage nanosheet transistor stacked over the third storage nanosheet transistor, and a second gate electrode shared by the third storage nanosheet transistor and the fourth storage nanosheet transistor. The first gate electrode and the second gate electrode are arranged in a spaced arrangement along a longitudinal axis. All gate electrodes of the SRAM bitcell may be arranged in a 1CPP layout.

    Gate-all-around transistor with spacer support and methods of forming same

    公开(公告)号:US10734525B2

    公开(公告)日:2020-08-04

    申请号:US15920886

    申请日:2018-03-14

    Abstract: The disclosure relates to gate-all-around (GAA) transistors with a spacer support, and related methods. A GAA transistor according to embodiments of the disclosure includes: at least one semiconductor channel structure extending between a source terminal and a drain terminal; a spacer support having a first portion thereof positioned underneath and a second portion thereof positioned alongside a first portion of the at least one semiconductor channel structure; and a gate metal surrounding a second portion of the at least one semiconductor channel structure between the source and drain terminals; wherein the spacer support is positioned between the gate metal and the source or drain terminal.

Patent Agency Ranking