Abstract:
A method of fabricating a semiconductor device where: (i) the fins are formed over a porous semiconductor material layer (for example, a silicon layer); and (ii) the porous semiconductor layer is then oxidized to form an insulator layer (for example, a SiO2 buried oxide layer). The pores in the porous semiconductor layer facilitate reliable oxidation of the insulator layer by allowing penetration of gaseous oxygen (O2) throughout the layer as it is oxidized to form the insulator layer. In some of these embodiments, a thin non-porous semiconductor layer is located over the porous semiconductor layer (prior to its oxidation) to allow strained epitaxial growth of material to be used in making source regions and drain regions of the finished semiconductor device (for example, a FINFET).
Abstract:
A pulsed laser-initiated exfoliation method for patterning a Group III-nitride film on a growth substrate is provided. This method includes providing a Group III-nitride film a growth substrate, wherein a growth substrate/Group III-nitride film interface is present between the Group III-nitride film and the growth substrate. Next, a laser is selected that provides radiation at a wavelength at which the Group III-nitride film is transparent and the growth substrate is absorbing. The interface is then irradiated with pulsed laser radiation from the Group III-nitride film side of the growth substrate/Group III-nitride film interface to exfoliate a region of the Group III-nitride from the growth substrate. A method for transfer a Group-III nitride film from a growth substrate to a handle substrate is also provided.
Abstract:
Fabrication methods are disclosed that facilitate the production of electronic structures that are both flexible and stretchable to conform to non-planar (e.g. curved) surfaces without suffering functional damage due to excessive strain. Electronic structures including CMOS devices are provided that can be stretched or squeezed within acceptable limits without failing or breaking. The methods disclosed herein further facilitate the production of flexible, stretchable electronic structures having multiple levels of intra-chip connectors. Such connectors are formed through deposition and photolithographic patterning (back end of the line processing) and can be released following transfer of the electronic structures to flexible substrates.
Abstract:
High resolution active matrix structures are fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed using a semiconductor-on-insulator substrate. The substrate is thinned using a layer transfer technique or chemical/mechanical processing. Driver transistors are formed on the semiconductor layer of the substrate along with additional circuits that provide other functions such as computing or sensing. Contacts to passive devices such as organic light emitting diodes may be provided by heavily doped regions formed in the handle layer of the substrate and then isolated. A gate dielectric layer may be formed on the semiconductor layer, which functions as a channel layer, or the insulator layer of the substrate may be employed as a gate dielectric layer.
Abstract:
An aspect of the disclosure includes a semiconductor structure comprising: a set of fins on a substrate, the set of fins including a relaxed silicon germanium layer; and a dielectric between each fin in the set of fins; wherein each fin in a n-type field effect transistor (nFET) region further includes a strained silicon layer over the relaxed silicon germanium layer of each fin in the nFET region; wherein each fin in a p-type field effect transistor (pFET) region further includes a strained silicon germanium layer over the relaxed silicon germanium layer of each fin in the pFET region.
Abstract:
A method of fabricating a semiconductor device where: (i) the fins are formed over a porous semiconductor material layer (for example, a silicon layer); and (ii) the porous semiconductor layer is then oxidized to form an insulator layer (for example, a SiO2 buried oxide layer). The pores in the porous semiconductor layer facilitate reliable oxidation of the insulator layer by allowing penetration of gaseous oxygen (O2) throughout the layer as it is oxidized to form the insulator layer. In some of these embodiments, a thin non-porous semiconductor layer is located over the porous semiconductor layer (prior to its oxidation) to allow strained epitaxial growth of material to be used in making source regions and drain regions of the finished semiconductor device (for example, a FINFET).
Abstract:
A circuit includes a first field effect transistor having a gate, a first drain-source terminal, and a second drain-source terminal; and a second field effect transistor having a gate, a first drain-source terminal, and a second drain-source terminal. The second field effect transistor and the first field effect transistor are of the same type, i.e., both re-channel transistors or both p-channel transistors. The second drain-source terminal of the first field effect transistor is coupled to the first drain-source terminal of the second field effect transistor; and the gate of the second field effect transistor is coupled to the first drain-source terminal of the second field effect transistor. The resulting three-terminal device can be substituted for a single field effect transistor that would otherwise suffer breakdown under proposed operating conditions.
Abstract:
A method for forming a back-illuminated image sensor includes forming a higher doped crystalline layer on a crystalline substrate, growing a lower doped crystalline layer on the higher doped crystalline layer and forming a photodiode and component circuitry from the lower doped crystalline layer. Metallization structures are formed to make connections to and between components. The crystalline substrate is removed to expose the higher doped crystalline layer. An optical component structure is provided on an exposed surface of the higher doped crystalline layer to receive light therein such that the higher doped crystalline layer provides a passivation layer for the photodiode and the component circuitry.
Abstract:
An InxGa1-xAs interlayer is provided between a III-V base and an intrinsic amorphous semiconductor layer of a heterojunction III-V solar cell structure. Improved surface passivation and open circuit voltage may be obtained through the incorporation of the interlayer within the structure.
Abstract translation:在III-V基极和异质结III-V族太阳能电池结构的本征非晶半导体层之间提供In x Ga 1-x As夹层。 可以通过在结构内并入中间层来获得改进的表面钝化和开路电压。
Abstract:
A method for forming a back-illuminated image sensor includes forming a higher doped crystalline layer on a crystalline substrate, growing a lower doped crystalline layer on the higher doped crystalline layer and forming a photodiode and component circuitry from the lower doped crystalline layer. Metallization structures are formed to make connections to and between components. The crystalline substrate is removed to expose the higher doped crystalline layer. An optical component structure is provided on an exposed surface of the higher doped crystalline layer to receive light therein such that the higher doped crystalline layer provides a passivation layer for the photodiode and the component circuitry.