Abstract:
A part formation system includes: a mobile robot; a first material feeding device configured to feed carbon fiber prepreg material, one layer at a time, onto the mobile robot to form a stack of carbon fiber prepreg layers on the mobile robot; a second material feeding device configured to feed a paint film onto the stack of carbon fiber prepreg layers to provide a resultant stack of layers; and a heat press configured to form and cure the resultant stack of layers to provide a resultant painted part by heating and compressing the resultant stack of layers.
Abstract:
A fused filament deposition head is employed for depositing filament materials on workpieces to join the workpieces together. The workpieces can be of an automotive application, aerospace application, or something else. The fused filament deposition head, in an example, has a feed end, a dispensing end, and a heater. The feed end introduces more than one filament in the fused filament deposition head, as demanded in the larger application. The dispensing end delivers materials of the filaments to the underlying workpieces. The materials are delivered together. The heater serves to heat the filaments as they travel through the fused filament deposition head. The filaments can include a filament having a core portion of liquid-crystal polymer material.
Abstract:
Aspects of the disclosure include a pre-formed battery cell thermal barrier for a battery module. An exemplary battery module can include a plurality of conductively coupled electrochemical cells and a pre-formed thermal barrier. The battery module can further include a cell holder configured to receive the plurality of conductively coupled electrochemical cells and the pre-formed thermal barrier. The pre-formed thermal barrier includes a cured potting material insertable into a cell-to-cell space in the battery module.
Abstract:
A method of joining workpieces includes the steps of bringing a first workpiece and a second workpiece together, induction heating a susceptor material, and pressing the workpieces together. Each workpiece may include a thermoplastic material, and the workpieces are brought together at a joint interface so that a protrusion of the first workpiece is aligned with a receptacle of the second workpiece. The susceptor material is in contact with the thermoplastic material of the first workpiece during heating such that the thermoplastic material of the first workpiece softens. The step of pressing is performed while the thermoplastic material of the first workpiece is softened, thereby reshaping the first workpiece where the susceptor material is in contact with the thermoplastic material of the first workpiece. The protrusion is deformed to form an interlock with the receptacle at the joint interface.
Abstract:
A fused filament deposition head is employed for depositing filament materials on workpieces to join the workpieces together. The workpieces can be of an automotive application, aerospace application, or something else. The fused filament deposition head, in an example, has a feed end, a dispensing end, and a heater. The feed end introduces more than one filament in the fused filament deposition head, as demanded in the larger application. The dispensing end delivers materials of the filaments to the underlying workpieces. The materials are delivered together. The heater serves to heat the filaments as they travel through the fused filament deposition head. The filaments can include a filament having a core portion of liquid-crystal polymer material.
Abstract:
A three-dimensional lattice includes a stabilizing grid having grid warp strands and grid weft strands crossing the grid warp strands. Grid cells are defined by adjacent grid warp strands and adjacent grid weft strands intersecting the adjacent grid warp strands. A projecting net has net warp strands and net weft strands crossing the net warp strands. Each subnet in a plurality of subnets uniquely corresponds to a corresponding grid cell. Each subnet includes a net warp strand portion intersecting both of the grid weft strands that define the corresponding grid cell. Each subnet includes a net weft strand portion intersecting both of the grid warp strands that define the corresponding grid cell. The net warp strand portion and the net weft strand portion of each subnet are spaced from a minimum surface defined by the corresponding grid cell.
Abstract:
A multi-layer and multi-functional composite structure includes a structural reinforcing portion configured to provide structural support. The structural reinforcing portion includes reinforcing fibers consolidated in a thermoplastic resin. A protecting portion is arranged on one side of the structural reinforcing portion and configured to provide at least one of thermal blocking and fire resistance. A shielding portion is arranged on an opposite side of the structural reinforcing portion and configured to shield electromagnetic interference (EMI).
Abstract:
An assembly for a vehicle includes a first member including a plurality of elastically deformable locating protrusions extending outward, and a second member defining a cavity extending inward and including a plurality of elastically deformable compression features disposed within the cavity. The locating protrusions of the first member are disposed within the cavity of the second member in press fit engagement with the compression features of the second member to secure the first member relative to the second member. The average of the elastic deformation between all of the locating protrusions of the first member and all of the compression features of the second member precisely aligns the first member relative to the second member. The assembly may include but is not limited to a multiple unit battery pack, a multiple unit fuel cell pack, a dashboard assembly or adjoining body panels.
Abstract:
A composite fusion filament is disclosed that includes a polymer encasement and one or more mesogenic reinforcement bodies contained within the polymer encasement. The polymer encasement is comprised of a thermoplastic polymer, which has a melting temperature, and each of the one or more mesogenic reinforcement bodies is comprised of a thermotropic liquid crystal polymer, which has a clearing temperature. The melting temperature of the thermoplastic polymer included in the polymer encasement is less than the clearing temperature of the thermotropic liquid crystal polymer included in the one or more mesogenic reinforcement bodies. Additionally, the thermotropic liquid crystal polymer of each mesogenic reinforcement body has a plurality of organized crystalline fibrils that are aligned lengthwise along a longitudinal axis of the polymer encasement. A method of using the composite fusion filament to form a bond with a substrate that includes a thermoplastic polymer is also disclosed.
Abstract:
A method of joining workpieces includes the steps of bringing a first workpiece and a second workpiece together, induction heating a susceptor material, and pressing the workpieces together. Each workpiece may include a thermoplastic material, and the workpieces are brought together at a joint interface so that a protrusion of the first workpiece is aligned with a receptacle of the second workpiece. The susceptor material is in contact with the thermoplastic material of the first workpiece during heating such that the thermoplastic material of the first workpiece softens. The step of pressing is performed while the thermoplastic material of the first workpiece is softened, thereby reshaping the first workpiece where the susceptor material is in contact with the thermoplastic material of the first workpiece. The protrusion is deformed to form an interlock with the receptacle at the joint interface.