摘要:
A new family of crystalline aluminosilicate zeolites has been synthesized designated UZM-7. These zeolites are represented by the empirical formula. Mmn+Rrp+Al(1-x)ExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as lithium, potassium and barium, R is an organoammonium cation such as the choline or the diethyldimethylammonium cation and E is a framework element such as gallium. These zeolites are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes.
摘要:
A series of crystalline layered and microporous compositions have been prepared. Compositions that have a layered structure and are identified as UZM-13, UZM-17 and UZM-19. Upon calcination at a temperature of about 400° C. to about 600° C., these compositions form a microporous crystalline zeolite with a three dimensional framework which has been identified as UZM-25. A process for preparing all these compositions and processes for using these compositions are also disclosed.
摘要:
A new family of crystalline aluminosilicate zeolites has been synthesized designated UZM-7. These zeolites are represented by the empirical formula. Mmn+Rrp+Al(1-x)ExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as lithium, potassium and barium, R is an organoammonium cation such as the choline or the diethyldimethylammonium cation and E is a framework element such as gallium. These zeolites are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes.
摘要:
A family of crystalline aluminosilicate zeolites designated UZM-8HS and derived from UZM-8 have been synthesized. The aluminum content of the UZM-8HS is lower than that of the starting UZM-8 thus changing its ion exchange capacity and acidity. These UZM-8HS are represented by the empirical formula: M1an+Al(1−x)ExSiy′Oz″ and are prepared by treatments such as acid extraction and AFS treatments.
摘要:
A series of crystalline layered and microporous compositions have been prepared. Compositions that have a layered structure and are identified as UZM-13, UZM-17 and UZM-19. Upon calcination at a temperature of about 400° C. to about 600° C., these compositions form a microporous crystalline zeolite with a three dimensional framework which has been identified as UZM-25. A process for preparing all these compositions and processes for using these compositions are also disclosed.
摘要:
A new family of crystalline microporous metallophosphates designated AlPO-59 has been synthesized. These metallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as the ETMA+, M is a framework metal alkaline earth or transition metal of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The AlPO-59 compositions are characterized by a new unique ABC-6 net structure and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.
摘要:
A new family of crystalline microporous metallophosphates designated AlPO-57 has been synthesized. These metallophosphates are represented by the empirical formula R+rMmn+EPxSiyOz where R is an organoammonium cation such as the DEDMA+, M is a divalent framework metal such as an alkaline earth or transition metal, and E is a framework element such as aluminum or gallium. The microporous AlPO-57 compositions are characterized by a new unique ABC-6 net structure and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for separating at least one component.
摘要:
A new family of crystalline microporous metallophosphates designated AlPO-57 has been synthesized. These metallophosphates are represented by the empirical formula R+rMmn+EPxSiyOz where R is an organoammonium cation such as the DEDMA+, M is a divalent framework metal such as an alkaline earth or transition metal, and E is a framework element such as aluminum or gallium. The microporous AlPO-57 compositions are characterized by a new unique ABC-6 net structure and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for separating at least one component.
摘要:
A new family of crystalline microporous metallophosphates designated AlPO-57 has been synthesized. These metallophosphates are represented by the empirical formula R+rMmn+EPxSiyOz where R is an organoammonium cation such as the DEDMA+, M is a divalent framework metal such as an alkaline earth or transition metal, and E is a framework element such as aluminum or gallium. The microporous AlPO-57 compositions are characterized by a new unique ABC-6 net structure and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for separating at least one component.
摘要:
A new family of crystalline microporous metallophosphates designated AlPO-59 has been synthesized. These metallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as the ETMA+, M is a framework metal alkaline earth or transition metal of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The AlPO-59 compositions are characterized by a new unique ABC-6 net structure and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.