Abstract:
In some examples, a composition includes a hydrocarbon and ozone catalyst. The hydrocarbon and ozone catalyst includes one or more catalytic layers overlying a substrate. The one or more catalytic layers include a non-catalytic component, an ozone catalytic component, and a hydrocarbon catalytic component. The non-catalytic component includes titanium oxide. The ozone catalytic component includes cobalt oxide. The hydrocarbon catalytic component includes platinum. An outermost layer of the one or more catalytic layers includes the hydrocarbon catalytic component distributed in the non-catalytic component.
Abstract:
An Environmental Control System includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects a contaminant in the air and generates a contaminant signal. The controller compares the contaminant signal to a predicted sensory response threshold. When the contaminant signal reaches the predicted sensory response threshold, the controller commands the air purification subsystem to alter a condition in the air.
Abstract:
An air purification system includes a photocatalyst on a support disposed to contact airflow through an airflow channel passing across or through the support; an ultraviolet light emitting diode (UV-LED) disposed to emit ultraviolet light onto the photocatalyst, the UV-LED operated at a less than one hundred percent duty cycle, the duty cycle determined at least in part as a function of a desired minimum volatile organic compound conversion rate of air flowing through the airflow channel and a desired maximum by-product concentration of air flowing through an outlet of the airflow channel.
Abstract:
An air purification system includes a photocatalyst on a support disposed to contact airflow through an airflow channel passing across or through the support; an ultraviolet light emitting diode (UV-LED) disposed to emit ultraviolet light onto the photocatalyst, the UV-LED operated at a less than one hundred percent duty cycle, the duty cycle determined at least in part as a function of a desired minimum volatile organic compound conversion rate of air flowing through the airflow channel and a desired maximum by-product concentration of air flowing through an outlet of the airflow channel.
Abstract:
The disclosure describes a system for generating hydrogen gas from a hydrocarbon through pyrolysis with reduced soot formation and increased carbon loading. The system includes one or more pyrolysis reactors configured to generate the hydrogen gas from the hydrocarbon through pyrolysis. Each pyrolysis reactor of the one or more pyrolysis reactors includes one or more fibrous substrates and a concentration sensor downstream of at least one fibrous substrate of the one or more fibrous substrates. Each fibrous substrate of the one or more fibrous substrates defines a deposition surface for carbon generated from the pyrolysis of the hydrocarbon and includes a plurality of fibers configured to maintain chemical and structural stability between 850° C. and 1300° C. The concentration sensor is configured to measure a concentration of at least one of a hydrocarbon byproduct or a hydrocarbon soot precursor, such as acetylene.
Abstract:
A contaminant removal system for removing a contaminant from an environment includes a gas separator, a scrubber-separator downstream of the gas separator, and a stripper-separator downstream of the scrubber-separator. The gas separator is configured to receive a cabin air stream from the environment and concentrate the contaminant from the cabin air stream to produce a concentrated cabin air stream. The cabin air stream includes the contaminant, and the concentrated cabin air stream has a higher concentration of the contaminant than the cabin air stream. The scrubber-separator is configured to absorb the contaminant from the concentrated cabin air stream into a liquid sorbent and discharge a clean air stream to the environment. The stripper-separator is configured to desorb the contaminant from the liquid sorbent into a contaminant stream.
Abstract:
An Environmental Control System includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects a contaminant in the air and generates a contaminant signal. The controller compares the contaminant signal to a predicted sensory response threshold. When the contaminant signal reaches the predicted sensory response threshold, the controller commands the air purification subsystem to alter a condition in the air.
Abstract:
An aircraft fuel deoxygenation and tank inerting system includes an inert gas source, a fuel deoxygenation system, and an air/fuel heat exchanger. The inert gas source is configured to supply inert gas having an oxygen concentration of less than 3%. The fuel deoxygenation system is adapted to receive fuel from a fuel source and the inert gas from the inert gas source. The fuel deoxygenation system is configured to remove oxygen from the fuel and thereby generate and supply deoxygenated fuel and oxygen-rich purge gas. The air/fuel heat exchanger is adapted to receive compressed air from a compressed air source and the deoxygenated fuel from the fuel deoxygenation system. The air/fuel heat exchanger is configured to transfer heat from the compressed air to the deoxygenated fuel, to thereby supply cooled compressed air and heated deoxygenated fuel.
Abstract:
In some examples, a composition includes a hydrocarbon and ozone catalyst. The hydrocarbon and ozone catalyst includes one or more catalytic layers overlying a substrate. The one or more catalytic layers include a non-catalytic component, an ozone catalytic component, and a hydrocarbon catalytic component. The non-catalytic component includes titanium oxide. The ozone catalytic component includes cobalt oxide. The hydrocarbon catalytic component includes platinum. An outermost layer of the one or more catalytic layers includes the hydrocarbon catalytic component distributed in the non-catalytic component.
Abstract:
The disclosure describes a system for generating hydrogen gas from a hydrocarbon through pyrolysis with reduced soot formation and increased carbon loading. The system includes one or more pyrolysis reactors configured to generate the hydrogen gas from the hydrocarbon through pyrolysis. Each pyrolysis reactor of the one or more pyrolysis reactors includes one or more fibrous substrates and a concentration sensor downstream of at least one fibrous substrate of the one or more fibrous substrates. Each fibrous substrate of the one or more fibrous substrates defines a deposition surface for carbon generated from the pyrolysis of the hydrocarbon and includes a plurality of fibers configured to maintain chemical and structural stability between 850° C. and 1300° C. The concentration sensor is configured to measure a concentration of at least one of a hydrocarbon byproduct or a hydrocarbon soot precursor, such as acetylene.