Abstract:
A multi-layer phase change material, including: a multi-layer film structure. The multi-layer film structure includes a plurality of periodic units. The periodic units each includes a first single-layer film phase change material and a second single-layer film phase change material. The first single-layer film phase change material and the second single-layer film phase change material are alternately stacked. The first single-layer film phase change material includes chemical components that are different from chemical components included in the second single-layer film phase change material, or the first single-layer film phase change material includes chemical components that are the same as chemical components included in the second single-layer film phase change material and a percent composition of the chemical components included in the first single-layer film phase change material is different from a percent composition of the chemical components included in the second single-layer film phase change material.
Abstract:
A Cu-doped Sb2Te3 system phase change material, a phase change memory, and a preparation method thereof belonging to the technical field of micro-nano electronics are provided. A Sb—Te system phase change material is doped with Cu element to form Cu3Te2 bonds with both tetrahedral and octahedral structures in the case of local enrichment of Cu. The strongly bonded tetrahedral structure improves the amorphous stability and data retention capability of the Sb—Te system phase change material, and the octahedral structure of the crystal configuration improves the crystallization speed of the Sb—Te system phase change material. A phase change memory including the phase change material and a preparation method of the phase change material are also provided. Through the phase change material provided by the invention, both the speed and amorphous stability of the device are improved, and the comprehensive performance of the phase change memory is also enhanced.
Abstract:
Disclosed is a temperature sensing and computing device and array based on TaOx electronic memristor, including a first metal layer, a function layer, and a second metal layer sequentially stacked from bottom to top; a work function of a metal material in the first metal layer is higher than a work function of a metal material in the second metal layer; the function layer is TaOx material; the first metal layer is grounded, and positive and negative voltages are applied to the second metal layer; in which an output current when the negative voltage is applied to the second metal layer is greater than an output current when the positive voltage of the same magnitude is applied to the second metal layer, and there is a self-rectifying effect; when the voltage of the same magnitude is applied to the second metal layer, the output current increases as a temperature increases.
Abstract:
A Y-branch type phase-change all-optical Boolean logic device comprises a waveguide of a Y-branch structure and phase change function units covered over the waveguide. In the logic implementation method, a light pulse having a large power is employed to perform a write operation on the phase change function unit, so that the phase change function unit is heated to generate a crystallization or amorphization phase change, thereby causing a difference in optical properties under two states; the state of the phase change function unit is read by employing a light pulse having a small power, and the state of its phase change material is not changed. By defining input logic signals respectively and defining three operation steps, an operation mode reconfigurable logic can be implemented, and all 16 binary Boolean logic calculations are implemented in a simple structure by means of step-by-step operation.
Abstract:
The disclosure provides a straight waveguide phase change all-photonic Boolean logic device and a full binary logic implementation method thereof, including a straight waveguide structure, a phase change functional unit covered on top of a waveguide and a protective layer thereof, and a waveguide Bragg grating structure. In terms of the logic implementation method, optical pulses are respectively input from two ends of the device to modulate the state of the phase change functional unit. The parameters of the waveguide Bragg grating structure are set to reflect the wavelength of the pump optical pulse, so that write pulses input from the two ends only act on the phase change functional unit closest to that end. A probe optical pulse with a specific wavelength is selected, and the probe light under the wavelength is less reflected by the waveguide Bragg grating and does not affect the reading of the state of the device. The disclosure has advantages such as anti-electromagnetic interference and parallel operation. Functions of 16 types of binary Boolean logic operation are implemented, which greatly improves the work efficiency of logic operation.
Abstract:
A nonvolatile logic gate circuit based on phase change memories, including a first phase change memory, a second phase change memory, a first controllable switch element and a first resistor, wherein a first end of the first phase change memory serves as a first input end of an AND gate circuit, a first end of the second phase change memory serves as a second input end of the AND gate circuit, a first end of the first controllable switch element is connected to a second end of the first phase change memory, a second end of the first controllable switch element is grounded; one end of the first resistor is connected to the first end of the second phase change memory, the other end of the first resistor is grounded; and the first end of the second phase change memory serves as an output end of the AND gate circuit.
Abstract:
A phase change memory device based on a nano current channel is provided. A nano current channel layer structure is adopted and configured to limit the current channel. As such, when flowing through the layer, the current enters the phase change layer from nano crystal grains with high electrical conductivity, and the current is thereby confined in the nano current channels. By using the nano-scale conductive channels, the contact area between the phase change layer and the electrode layer is significantly decreased, the current density at local contact channel is significantly increased, and heat generation efficiency of the current in the phase change layer is improved. Moreover, an electrically insulating and heat-insulating material with low electrical conductivity and low thermal conductivity prevents heat in the phase change layer from being dissipated to the electrode layer, and Joule heat utilization efficiency of the phase change layer is thereby improved.
Abstract:
A superlattice phase-change thin film with a low density change, a phase-change memory and a preparation method. The superlattice phase-change thin film includes first phase-change layers (7) and second phase-change layers (8) that are alternately stacked to form a periodic structure; during crystallization, the first phase-change layer (7) has a conventional positive density change, and the second phase-change layer (8) has an abnormal negative density change, therefore, the abnormal density reduction and volume increase of the second phase-change layer (8) during crystallization can be used to offset the volume reduction of the first phase-change layer (7) during crystallization.