摘要:
A semiconductor device includes semiconductor layers, an anode electrode, and a cathode electrode. The semiconductor layers include a composition change layer, the anode electrode is electrically connected to one of principal surfaces of the composition change layer through a formation of a Schottky junction between the anode electrode and a part of the semiconductor layers, the cathode electrode is electrically connected to the other of the principal surfaces of the composition change layer through a formation of a junction between the cathode electrode and another part of the semiconductor layers, the anode electrode and the cathode electrode are capable of applying a voltage to the composition change layer in a direction perpendicular to the principal surface.
摘要:
[Problem to be Solved] Provided is a semiconductor device in which the trade-off between the pressure resistance and the on-state resistance is improved and the performance is improved.[Solution] The semiconductor device 1 of the present invention comprises semiconductor layers 20 to 23, an anode electrode 12, and a cathode electrode 13, wherein the semiconductor layers include a composition change layer 23, the anode electrode 12 is electrically connected to one of principal surfaces of the composition change layer through a formation of a Schottky junction between the anode electrode 12 and a part of the semiconductor layers, the cathode electrode 13 is electrically connected to the other of the principal surfaces of the composition change layer through a formation of a junction between the cathode electrode 13 and another part of the semiconductor layers, the anode electrode 12 and the cathode electrode 13 are capable of applying a voltage to the composition change layer 23 in a direction perpendicular to the principal surface, andthe composition change layer 23 has composition that changes from a cathode electrode 13 side toward an anode electrode 12 side in the direction perpendicular to the principal surface of the composition change layer, has a negative polarization charge that is generated due to the composition that changes, and contains a donor impurity.
摘要:
Provided is a semiconductor device in which the trade-off between the withstand voltage and the on-resistance is improved and the performance is increased. A semiconductor device comprises a substrate 1, a first n-type semiconductor layer 21′, a second n-type semiconductor layer 23, a p-type semiconductor layer 24, and a third n-type semiconductor layer 25′, wherein the first n-type semiconductor layer 21′, the second n-type semiconductor layer 23, the p-type semiconductor layer 24, and the third n-type semiconductor layer 25′ are laminated at the upper side of the substrate 1 in this order. The drain electrode 13 is in ohmic-contact with the first n-type semiconductor layer 21′ and the source electrode 12 is in ohmic-contact with the third n-type semiconductor layer 25′. A gate electrode 14 is arranged so as to fill an opening portion to be filled that extends from the third n-type semiconductor layer 25′ to the second n-type semiconductor layer 23, and the gate electrode 14 is in contact with the upper surface of the second n-type semiconductor layer 23, the side surfaces of the p-type semiconductor layer 24, and the side surfaces of the third n-type semiconductor layer 25′. The second n-type semiconductor layer 23 has composition that changes from the drain electrode 13 side toward the source electrode 12 side in the direction perpendicular to the plane of the substrate 1 and contains donor impurity.
摘要:
Provided is a semiconductor device in which the trade-off between the withstand voltage and the on-resistance is improved and the performance is increased.A semiconductor device comprises a substrate 1, a first n-type semiconductor layer 21′, a second n-type semiconductor layer 23, a p-type semiconductor layer 24, and a third n-type semiconductor layer 25′, wherein the first n-type semiconductor layer 21′, the second n-type semiconductor layer 23, the p-type semiconductor layer 24, and the third n-type semiconductor layer 25′ are laminated at the upper side of the substrate 1 in this order. The drain electrode 13 is in ohmic-contact with the first n-type semiconductor layer 21′ and the source electrode 12 is in ohmic-contact with the third n-type semiconductor layer 25′. A gate electrode 14 is arranged so as to fill an opening portion to be filled that extends from the third n-type semiconductor layer 25′ to the second n-type semiconductor layer 23, and the gate electrode 14 is in contact with the upper surface of the second n-type semiconductor layer 23, the side surfaces of the p-type semiconductor layer 24, and the side surfaces of the third n-type semiconductor layer 25′. The second n-type semiconductor layer 23 has composition that changes from the drain electrode 13 side toward the source electrode 12 side in the direction perpendicular to the plane of the substrate 1 and contains donor impurity.
摘要:
There is provided a semiconductor apparatus capable of achieving both a reverse blocking characteristic and a low on-resistance. The semiconductor apparatus includes a first semiconductor layer including a channel layer, a source electrode formed on the first semiconductor layer, a drain electrode formed at a distance from the source electrode on the first semiconductor layer, and a gate electrode formed between the source electrode and the drain electrode on the first semiconductor layer. The drain electrode includes a first drain region where reverse current between the first semiconductor layer and the first drain region is blocked, and a second drain region formed at a greater distance from the gate electrode than the first drain region, where a resistance between the first semiconductor layer and the second drain region is lower than a resistance between the first semiconductor layer and the first drain region.
摘要:
There is provided a semiconductor apparatus capable of achieving both a reverse blocking characteristic and a low on-resistance. The semiconductor apparatus includes a first semiconductor layer including a channel layer, a source electrode formed on the first semiconductor layer, a drain electrode formed at a distance from the source electrode on the first semiconductor layer, and a gate electrode formed between the source electrode and the drain electrode on the first semiconductor layer. The drain electrode includes a first drain region where reverse current between the first semiconductor layer and the first drain region is blocked, and a second drain region formed at a greater distance from the gate electrode than the first drain region, where a resistance between the first semiconductor layer and the second drain region is lower than a resistance between the first semiconductor layer and the first drain region.
摘要:
The present invention provides a field effect transistor which can achieve both of a high threshold voltage and a low on-state resistance, a method for producing the same, and an electronic device. In the field effect transistor, each of a buffer layer 112, a channel layer 113, a barrier layer 114, and a spacer layer 115 is formed of a group-III nitride semiconductor, and each of the upper surfaces thereof is a group-III atomic plane that is perpendicular to a (0001) crystal axis. The lattice-relaxed buffer layer 112, the channel layer 113 having a compressive strain, and the barrier layer 114 having a tensile strain, and the spacer layer 115 having a compressive strain are laminated on a substrate 100 in this order. The gate insulating film 14 is arranged on the spacer layer 115. The gate electrode 15 is arranged on the gate insulating film 14. The source electrode 161 and the drain electrode 162 are electrically connected to the channel layer 113 directly or via another component.
摘要:
The present invention provides a field effect transistor which can achieve both of a high threshold voltage and a low on-state resistance, a method for producing the same, and an electronic device. In the field effect transistor, each of a buffer layer 112, a channel layer 113, a barrier layer 114, and a spacer layer 115 is formed of a group-III nitride semiconductor, and each of the upper surfaces thereof is a group-III atomic plane that is perpendicular to a (0001) crystal axis. The lattice-relaxed buffer layer 112, the lattice-relaxed channel layer 113, and the barrier layer 114 having a tensile strain, and the spacer layer 115 are laminated on a substrate 100 in this order. The gate insulating film 14 is arranged on the spacer layer 115. The gate electrode 15 is arranged on the gate insulating film 14. The source electrode 161 and the drain electrode 162 are electrically connected to the channel layer 113 directly or via another component.
摘要:
The present invention provides a field effect transistor which can achieve both of a high threshold voltage and a low on-state resistance, a method for producing the same, and an electronic device. In the field effect transistor, each of a buffer layer 112, a channel layer 113, a barrier layer 114, and a spacer layer 115 is formed of a group-III nitride semiconductor, and each of the upper surfaces thereof is a group-III atomic plane that is perpendicular to a (0001) crystal axis. The lattice-relaxed buffer layer 112, the channel layer 113 having a compressive strain, and the barrier layer 114 having a tensile strain, and the spacer layer 115 having a compressive strain are laminated on a substrate 100 in this order. The gate insulating film 14 is arranged on the spacer layer 115. The gate electrode 15 is arranged on the gate insulating film 14. The source electrode 161 and the drain electrode 162 are electrically connected to the channel layer 113 directly or via another component.
摘要:
In order to perform the polarization demultiplexing of the polarization multiplexed BPSK signal using a small-scale circuit by means of optical phase modulation of the polarization multiplexed BPSK signal into the pseudo polarization multiplexed QPSK signal, an optical communication system for communicating by using polarization multiplexed optical signals includes an optical phase modulation means for modulating phases of a plurality of optical signals employing BPSK modulation system including information to be communicated, and for generating a plurality of optical signals to become signals by pseudo QPSK modulation system; and a signal restoration means for performing polarization demultiplexing of a plurality of polarization multiplexed optical signals from a plurality of optical signals modulated into the pseudo QPSK modulation system, and for restoring the information to be communicated.